scholarly journals Jumping Translocations of Chromosome 1q in Multiple Myeloma: Evidence for a Mechanism Involving Decondensation of Pericentromeric Heterochromatin

Blood ◽  
1998 ◽  
Vol 91 (5) ◽  
pp. 1732-1741 ◽  
Author(s):  
Jeffrey R. Sawyer ◽  
Guido Tricot ◽  
Sandy Mattox ◽  
Sundar Jagannath ◽  
Bart Barlogie

Abstract Karyotypes in multiple myeloma (MM) are complex and exhibit numerous structural and numerical aberrations. The largest subset of structural chromosome anomalies in clinical specimens and cell lines involves aberrations of chromosome 1. Unbalanced translocations and duplications involving all or part of the whole long arm of chromosome 1 presumably occur as secondary aberrations and are associated with tumor progression and advanced disease. Unfortunately, cytogenetic evidence is scarce as to how these unstable whole-arm rearrangements may take place. We report nonrandom, unbalanced whole-arm translocations of 1q in the cytogenetic evolution of patients with aggressive MM. Whole-arm or “jumping translocations” of 1q were found in 36 of 158 successive patients with abnormal karyotypes. Recurring whole-arm translocations of 1q involved chromosomes 5,8,12,14,15,16,17,19,21, and 22. A newly delineated breakpoint present in three patients involved a whole-arm translocation of 1q to band 5q15. Three recurrent translocations of 1q10 to the short arms of different acrocentric chromosomes have also been identified, including three patients with der(15)t(1;15)(q10;p10) and two patients each with der(21)t(1;21)(q10;p13) and der(22)t(1;22) (q10;p10). Whole-arm translocations of 1q10 to telomeric regions of nonacrocentric chromosomes included der(12)t(1;12) (q10;q24.3) and der(19)t(1;19)(q10;q13.4) in three and two patients, respectively. Recurrent whole-arm translocations of 1q to centromeric regions included der(16)t(1;16)(q10;q10) and der(19)t(1;19)(q10;p10). The mechanisms involved in the 1q instability in MM may be associated with highly decondensed pericentromeric heterochromatin, which may permit recombination and formation of unstable translocations of chromosome 1q. The clonal evolution of cells with extra copies of 1q suggests that this aberration directly or indirectly provides a proliferative advantage.

Blood ◽  
1998 ◽  
Vol 91 (5) ◽  
pp. 1732-1741 ◽  
Author(s):  
Jeffrey R. Sawyer ◽  
Guido Tricot ◽  
Sandy Mattox ◽  
Sundar Jagannath ◽  
Bart Barlogie

Karyotypes in multiple myeloma (MM) are complex and exhibit numerous structural and numerical aberrations. The largest subset of structural chromosome anomalies in clinical specimens and cell lines involves aberrations of chromosome 1. Unbalanced translocations and duplications involving all or part of the whole long arm of chromosome 1 presumably occur as secondary aberrations and are associated with tumor progression and advanced disease. Unfortunately, cytogenetic evidence is scarce as to how these unstable whole-arm rearrangements may take place. We report nonrandom, unbalanced whole-arm translocations of 1q in the cytogenetic evolution of patients with aggressive MM. Whole-arm or “jumping translocations” of 1q were found in 36 of 158 successive patients with abnormal karyotypes. Recurring whole-arm translocations of 1q involved chromosomes 5,8,12,14,15,16,17,19,21, and 22. A newly delineated breakpoint present in three patients involved a whole-arm translocation of 1q to band 5q15. Three recurrent translocations of 1q10 to the short arms of different acrocentric chromosomes have also been identified, including three patients with der(15)t(1;15)(q10;p10) and two patients each with der(21)t(1;21)(q10;p13) and der(22)t(1;22) (q10;p10). Whole-arm translocations of 1q10 to telomeric regions of nonacrocentric chromosomes included der(12)t(1;12) (q10;q24.3) and der(19)t(1;19)(q10;q13.4) in three and two patients, respectively. Recurrent whole-arm translocations of 1q to centromeric regions included der(16)t(1;16)(q10;q10) and der(19)t(1;19)(q10;p10). The mechanisms involved in the 1q instability in MM may be associated with highly decondensed pericentromeric heterochromatin, which may permit recombination and formation of unstable translocations of chromosome 1q. The clonal evolution of cells with extra copies of 1q suggests that this aberration directly or indirectly provides a proliferative advantage.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Stephan M. Tirier ◽  
Jan-Philipp Mallm ◽  
Simon Steiger ◽  
Alexandra M. Poos ◽  
Mohamed H. S. Awwad ◽  
...  

AbstractVirtually all patients with multiple myeloma become unresponsive to treatment over time. Relapsed/refractory multiple myeloma (RRMM) is accompanied by the clonal evolution of myeloma cells with heterogeneous genomic aberrations and profound changes of the bone marrow microenvironment (BME). However, the molecular mechanisms that drive drug resistance remain elusive. Here, we analyze the heterogeneous tumor cell population and its complex interaction network with the BME of 20 RRMM patients by single cell RNA-sequencing before/after treatment. Subclones with chromosome 1q-gain express a specific transcriptomic signature and frequently expand during treatment. Furthermore, RRMM cells shape an immune suppressive BME by upregulation of inflammatory cytokines and close interaction with the myeloid compartment. It is characterized by the accumulation of PD1+ γδ T-cells and tumor-associated macrophages as well as the depletion of hematopoietic progenitors. Thus, our study resolves transcriptional features of subclones in RRMM and mechanisms of microenvironmental reprogramming with implications for clinical decision-making.


Blood ◽  
2006 ◽  
Vol 109 (6) ◽  
pp. 2276-2284 ◽  
Author(s):  
John D. Shaughnessy ◽  
Fenghuang Zhan ◽  
Bart E. Burington ◽  
Yongsheng Huang ◽  
Simona Colla ◽  
...  

Abstract To molecularly define high-risk disease, we performed microarray analysis on tumor cells from 532 newly diagnosed patients with multiple myeloma (MM) treated on 2 separate protocols. Using log-rank tests of expression quartiles, 70 genes, 30% mapping to chromosome 1 (P < .001), were linked to early disease-related death. Importantly, most up-regulated genes mapped to chromosome 1q, and down-regulated genes mapped to chromosome 1p. The ratio of mean expression levels of up-regulated to down-regulated genes defined a high-risk score present in 13% of patients with shorter durations of complete remission, event-free survival, and overall survival (training set: hazard ratio [HR], 5.16; P < .001; test cohort: HR, 4.75; P < .001). The high-risk score also was an independent predictor of outcome endpoints in multivariate analysis (P < .001) that included the International Staging System and high-risk translocations. In a comparison of paired baseline and relapse samples, the high-risk score frequency rose to 76% at relapse and predicted short postrelapse survival (P < .05). Multivariate discriminant analysis revealed that a 17-gene subset could predict outcome as well as the 70-gene model. Our data suggest that altered transcriptional regulation of genes mapping to chromosome 1 may contribute to disease progression, and that expression profiling can be used to identify high-risk disease and guide therapeutic interventions.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3919-3919
Author(s):  
Sang Mee Hwang ◽  
Jungeun Choi ◽  
Sunhee Yim ◽  
Tae Young Kim ◽  
Chaja See ◽  
...  

Abstract Abstract 3919 Background: Multiple myeloma is a clonal bone marrow disease characterized by the neoplastic transformation of differentiated B cells. Various complex cytogenetic and molecular genetic aberrations are present that are important for prognostication and follow up investigation. We investigated the clonal evolution of multiple myeloma patients at relapse or at progression compared from the diagnosis by conventional cytogenetics, fluorescence in situ hybridization (FISH) and cytoplasmic immunoglobulin fluroscence in situ hybridization (cIg FISH). Methods: 35 patients diagnosed as multiple myeloma by bone marrow examination from January 2003 to March 2011 were included. Conventional cytogenetics were performed in all patients at diagnosis and at relapse or progression. FISH was performed in 24 patients with available specimen for at least 3 items including −13/del(13q), p53 deletion/del(17p), 1q21 gain, p16 deletion, IgH rearrangement, t(4;14) and t(14;16). The FISH results were confirmed with cytoplasmic immunoglobulin FISH specifically staining plasma cells. Results: Forty-nine percent of the patients had relapsed or progressed with additional clonal evolutions and they were detected by conventional cytogenetics. Numerical abnormalities were more frequent than structural abnormalities and structural abnormalities involving chromosome 1 was frequent. Thirty-five percent had developed −13/13q loss which is considered a poor prognostic factor. cIg-FISH found additional aberrations in 20% of the patients such as RB1 deletion, del(17p) and t(14;16). Conclusion: Conventional cytogenetics and cIG-FISH are both necessary in relapsed patient since clonal evolutions develop in many patients which may only be detected by one method. Full evaluation of cIg-FISH including non-poor prognostic factors may be considered since new clones evolve that can be a candidate of follow-up marker and since prognostic factors can change as treatment modality changes. Disclosures: No relevant conflicts of interest to declare.


Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 256
Author(s):  
Ichiro Hanamura

Multiple myeloma (MM), a plasma cell neoplasm, is an incurable hematological malignancy characterized by complex genetic and prognostic heterogeneity. Gain or amplification of chromosome arm 1q21 (1q21+) is the most frequent adverse chromosomal aberration in MM, occurring in 40% of patients at diagnosis. It occurs in a subclone of the tumor as a secondary genomic event and is more amplified as the tumor progresses and a risk factor for the progression from smoldering multiple myeloma to MM. It can be divided into either 1q21 gain (3 copies) or 1q21 amplification (≥4 copies), and it has been suggested that the prognosis is worse in cases of amplification than gain. Trisomy of chromosome 1, jumping whole-arm translocations of chromosome1q, and tandem duplications lead to 1q21+ suggesting that its occurrence is not consistent at the genomic level. Many studies have reported that genes associated with the malignant phenotype of MM are situated on the 1q21 amplicon, including CKS1B, PSMD4, MCL1, ANP32E, and others. In this paper, we review the current knowledge regarding the clinical features, prognostic implications, and the speculated pathology of 1q21+ in MM, which can provide clues for an effective treatment approach to MM patients with 1q21+.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Youngil Koh ◽  
Woo-June Jung ◽  
Kwang-Sung Ahn ◽  
Sung-Soo Yoon

Purpose.We tried to establish clinically relevant human myeloma cell lines that can contribute to the understanding of multiple myeloma (MM).Materials and Methods.Mononuclear cells obtained from MM patient’s bone marrow were injected via tail vein in an NRG/SCID mouse. Fourteen weeks after the injection, tumor developed at subcutis of the mouse. The engraftment of MM cells into mouse bone marrow (BM) was also observed. We separated and cultured cells from subcutis and BM.Results.After the separation and culture of cells from subcutis and BM, we established two cell lines originating from a single patient (SNU_MM1393_BM and SNU_MM1393_SC). Karyotype of the two newly established MM cell lines showed tetraploidy which is different from the karyotype of the patient (diploidy) indicating clonal evolution. In contrast to SNU_MM1393_BM, cell proliferation of SNU_MM1393_SC was IL-6 independent. SNU_MM1393_BM and SNU_MM1393_SC showed high degree of resistance against bortezomib compared to U266 cell line. SNU_MM1393_BM had the greater lethality compared to SNU_MM1393_SC.Conclusion.Two cell lines harboring different site tropisms established from a single patient showed differences in cytokine response and lethality. Our newly established cell lines could be used as a tool to understand the biology of multiple myeloma.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eva Kriegova ◽  
Regina Fillerova ◽  
Jiri Minarik ◽  
Jakub Savara ◽  
Jirina Manakova ◽  
...  

AbstractExtramedullary disease (EMM) represents a rare, aggressive and mostly resistant phenotype of multiple myeloma (MM). EMM is frequently associated with high-risk cytogenetics, but their complex genomic architecture is largely unexplored. We used whole-genome optical mapping (Saphyr, Bionano Genomics) to analyse the genomic architecture of CD138+ cells isolated from bone-marrow aspirates from an unselected cohort of newly diagnosed patients with EMM (n = 4) and intramedullary MM (n = 7). Large intrachromosomal rearrangements (> 5 Mbp) within chromosome 1 were detected in all EMM samples. These rearrangements, predominantly deletions with/without inversions, encompassed hundreds of genes and led to changes in the gene copy number on large regions of chromosome 1. Compared with intramedullary MM, EMM was characterised by more deletions (size range of 500 bp–50 kbp) and fewer interchromosomal translocations, and two EMM samples had copy number loss in the 17p13 region. Widespread genomic heterogeneity and novel aberrations in the high-risk IGH/IGK/IGL, 8q24 and 13q14 regions were detected in individual patients but were not specific to EMM/MM. Our pilot study revealed an association of chromosome 1 abnormalities in bone marrow myeloma cells with extramedullary progression. Optical mapping showed the potential for refining the complex genomic architecture in MM and its phenotypes.


2021 ◽  
Vol 21 ◽  
pp. S64
Author(s):  
Ritu Gupta ◽  
Gurvinder Kaur ◽  
Akanksha Farswan ◽  
Lingaraja Jena ◽  
Anubha Gupta ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
T. Couture ◽  
K. Amato ◽  
A. DiAdamo ◽  
P. Li

Jumping translocations of 1q refer to the break-off of chromosome 1q as a donor fusing to two or more recipient chromosomes. We detected jumping translocations of 1q in three patients with initial diagnosis of myelodysplastic syndrome (MDS) and later progression to acute myeloid leukemia (AML). Review of literature found jumping translocations of 1q in 30 reported cases of MDS and AML. The cytogenetic findings from these 33 cases showed that seven cases had a stemline clone and 26 cases had de novo jumping translocations of 1q in which 5% of cell lineages had additional structural rearrangements. In 75% of cases, the 1q donor jumped to the short arm of recipient acrocentric chromosomes. Approximately 82% of the fusions occurred in the telomeric regions of short and long arms and 18% occurred in the pericentric or interstitial regions of recipient chromosomes. Hypomethylation of the donor 1q pericentromeric region and shortened telomeres in recipient chromosomes were associated with the formation of jumping translocations. Jumping translocations of 1q as an indication of chromosomal instability pose high risk for progression of MDS to AML and a poor prognosis. Further understanding of underlying genomic defects and their clinical significance will improve overall treatment and patient care.


Sign in / Sign up

Export Citation Format

Share Document