scholarly journals Modulating the rate of fibrin formation and clot structure attenuates microvascular thrombosis in systemic inflammation

2020 ◽  
Vol 4 (7) ◽  
pp. 1340-1349 ◽  
Author(s):  
Christian Valladolid ◽  
Marina Martinez-Vargas ◽  
Nitin Sekhar ◽  
Fong Lam ◽  
Cameron Brown ◽  
...  

Abstract Systemic inflammation can lead to coagulopathy and disseminated intravascular coagulation (DIC). In prior studies, the recombinant A2 domain of human von Willebrand factor (VWF; A2 protein) attenuated DIC and decreased mortality in lipopolysaccharide (LPS)-treated mice. Here, we performed studies to dissect the mechanism by which the A2 protein moderates DIC. We used confocal microscopy to analyze the fibrin clot structure in plasma from healthy humans and endotoxemic mice, turbidity assays to examine fibrin polymerization, and a murine model for LPS-induced DIC and introduced a loss-of-function mutation into the A2 protein for fibrin. The mutation of the residue E1567 located in the α2 helix of the folded A2 domain of VWF inhibited binding activity for fibrin, possibly mapping a novel region containing a putative binding site for fibrin. The A2 protein increased the initial rate of change of fibrin polymerization, intercalated into the fibrin network, and modified the resultant clot structure in vitro. Furthermore, ex vivo experiments using plasma from mice with endotoxemia treated with the A2 protein revealed an increased rate of fibrin formation and an altered clot structure as compared with plasma from nontreated sick animals. Moreover, and in contrast to the A2 mutant, the A2 protein improved survival and reduced fibrin deposition and microvascular thrombosis in mice with endotoxemia-induced DIC. Importantly, in vivo and in vitro studies indicated that the A2 protein did not affect experimental thrombosis. Thus, we provide evidence for a novel treatment to attenuate systemic inflammation-induced coagulopathy/DIC via targeting fibrin formation, without an increased risk for bleeding.

2005 ◽  
Vol 289 (6) ◽  
pp. H2680-H2687 ◽  
Author(s):  
Nicole Lindenblatt ◽  
Michael D. Menger ◽  
Ernst Klar ◽  
Brigitte Vollmar

Cold is supposed to be associated with alterations in blood coagulation and a pronounced risk for thrombosis. We studied the effect of clinically encountered systemic hypothermia on microvascular thrombosis in vivo and in vitro. Ferric chloride-induced microvascular thrombus formation was analyzed in cremaster muscle preparations from hypothermic mice. Additionally, flow cytometry and Western blot analysis was used to evaluate the effect of hypothermia on platelet activation. To test whether preceding hypothermia predisposes for enhanced thrombosis, experiments were repeated after hypothermia and rewarming to 37°C. Control animals revealed complete occlusion of arterioles and venules after 742 ± 150 and 824 ± 172 s, respectively. Systemic hypothermia of 34°C accelerated thrombus formation in arterioles and venules (279 ± 120 and 376 ± 121 s; P < 0.05 vs. 37°C). This was further pronounced after cooling to 31°C (163 ± 57 and 281 ± 71 s; P < 0.05 vs. 37°C). Magnitude of thrombin receptor activating peptide (TRAP)-induced platelet activation increased with decreasing temperatures, as shown by 1.8- and 3.0-fold increases in mean fluorescence after PAC-1 binding to glycoprotein (GP)IIb-IIIa and 1.6- and 2.9-fold increases of fibrinogen binding on incubation at 34°C and 31°C. Additionally, tyrosine-specific protein phosphorylation in platelets was increased at hypothermic temperatures. In rewarmed animals, kinetics of thrombus formation were comparable to those in normothermic controls. Concomitantly, spontaneous and TRAP-enhanced GPIIb-IIIa activation did not differ between rewarmed platelets and those maintained continuously at 37°C. Moderate systemic hypothermia accelerates microvascular thrombosis, which might be mediated by increased GPIIb-IIIa activation on platelets but does not cause predisposition with increased risk for microvascular thrombus formation after rewarming.


1991 ◽  
Vol 66 (04) ◽  
pp. 453-458 ◽  
Author(s):  
John T Brandt

SummaryLupus anticoagulants (LAs) are antibodies which interfere with phospholipid-dependent procoagulant reactions. Their clinical importance is due to their apparent association with an increased risk of thrombo-embolic disease. To date there have been few assays for quantifying the specific activity of these antibodies in vitro and this has hampered attempts to purify and characterize these antibodies. Methods for determining phospholipid-dependent generation of thrombin and factor Xa are described. Isolated IgG fractions from 7 of 9 patients with LAs were found to reproducibly inhibit enzyme generation in these assay systems, permitting quantitative expression of inhibitor activity. Different patterns of inhibitory activity, based on the relative inhibition of thrombin and factor Xa generation, were found, further substantiating the known heterogeneity of these antibodies. These systems may prove helpful in further purification and characterization of LAs.


1995 ◽  
Vol 73 (03) ◽  
pp. 349-355 ◽  
Author(s):  
Pierre Toulon ◽  
Elyane Frere ◽  
Claude Bachmeyer ◽  
Nathalie Candia ◽  
Philippe Blanche ◽  
...  

SummaryThrombin clotting time (TCT) and reptilase clotting time (RCT) were found significantly prolonged in a series of 72 HIV-infected patients drawn for routine coagulation testing. Both TCT and RCT were highly significantly correlated with albumin (r = -0.64, and r = -0.73 respectively, p<0.0001). TCT and RCT were significantly higher (p<0.0001) in a series of 30 other HIV-infected patients selected on their albumin level below 30.0 g/l (group l) than in 30 HIV-infected patients with albumin level above 40.0 g/l or in 30 HIV-negative controls; the two latter groups were not different. In vitro supplementation of plasma from group 1 patients with purified human albumin up to 45.0 g/l (final concentration) lead to a dramatic shortening effect on both TCT and RCT, which reached normal values. The TCT and RCT of the purified fibrinogen solutions (2.0 g/l final concentration) were not different in the three groups, and normal polymerization curves were obtained in all cases. This further ruled out the presence of any dysfibrinogenemia in the plasma from group 1 patients. Using purified proteins, highly significant correlations were demonstrated between the albumin concentration and the prolongations of both TCT and RCT, which were of the same magnitude order than those found in the patients plasma. These results suggest that hypo-albuminemia is responsible for the acquired fibrin polymerization defect reported in HIV-infected patients. The pathophysiological implication of the low albumin levels was suggested by the finding of decreased albumin levels (associated with prolonged TCT and RCT) in a small series of the eight HIV-infected patients who developed thrombotic complications.


1997 ◽  
Vol 78 (04) ◽  
pp. 1173-1177 ◽  
Author(s):  
Jacek Musiał ◽  
Jakub Swadźba ◽  
Miłosz Jankowski ◽  
Marek Grzywacz ◽  
Stanisława Bazan-Socha ◽  
...  

SummaryAntiphospholipid-protein antibodies (APA) include lupus-type anticoagulant (LA) and antibodies recognizing complexes of anionic phospholipids (e.g. cardiolipin) and proteins (e.g. prothrombin and (β2-glycoprotein I). The presence of APA is associated with an increased risk of both arterial and venous thrombosis. However, the pathogenic mechanism leading to thrombosis in patients with APA remains unclear. We studied 32 patients with systemic lupus erythematosus (SLE) who were divided into two groups depending on the presence (n = 19) or absence (n = 13) of APA. Healthy volunteers (n = 12) matched by age and sex served as controls. In all subjects LA and IgG class anticardiolipin antibodies (ACA) were determined. Thrombin generation was monitored ex vivo measuring fibrinopeptide A (FPA) and prothrombin fragment F1 + 2 (F1 + 2) in blood emerging from a skin microvasculature injury, collected at 30 second intervals. In subjects with antiphospholipid antibodies mean FPA and F1 + 2 concentrations were signiF1cantly higher at most blood sampling times than in controls. In some SLE patients with APA the process of thrombin generation was clearly disturbed and very high concentrations of F1brinopeptide A were detected already in the F1rst samples collected. Two minutes after skin incision SLE patients without APA produced slightly more FPA, but not F1 + 2, as compared to healthy subjects. Mathematical model applied to analyze the thrombin generation kinetics revealed that APA patients generated signiF1cantly greater amounts of thrombin than healthy controls (p = 0.02 for either marker). In contrast, in the same patients generation of thrombin in recalciF1ed plasma in vitro was delayed pointing to the role of endothelium in the phenomenon studied. In summary, these data show for the F1rst time that in SLE patients with antiphospholipid-protein antibodies thrombin generation after small blood vessel injury is markedly increased. Enhanced thrombin generation might explain thrombotic tendency observed in these patients.


1986 ◽  
Vol 55 (02) ◽  
pp. 271-275 ◽  
Author(s):  
Helen Ireland ◽  
D A Lane ◽  
Angela Flynn ◽  
E Anastassiades ◽  
J R Curtis

SummaryThe heparinoid of natural origin Org 10172 has anti-factor Xa activity but minimal anti-thrombin activity, and little effect upon broad spectrum assays such as the KCCT in vitro. Its anticoagulant effects have been compared to those of commercial heparin in 7 patients undergoing haemodialysis for chronic renal failure. Commercial heparin was administered in a dose (5,000 iu bolus + 1,500 iu/hour continuous iv infusion) previously shown to inhibit fibrin formation during haemodialysis. This produced mean anti-factor Xa levels in plasma between 0.7-1.0 iu/ml and largely suppressed fibrin formation for 5 h dialysis measured as mean FPA levels in plasma. Administration of Org 10172 as a bolus of 1,350 anti-factor Xa u or 2,000-2,400 anti-factor Xa u produced plasma anti-factor Xa levels of less than 0.5 u/ml and allowed fibrin clot and FPA generation during dialysis. Org 10172 administered as a bolus dose of 4,000-4,800 anti-factor Xa u produced mean anti-factor Xa levels of greater than 0.5 u/ml, allowed dialysis of 6 patients for 5 h and appreciably suppressed FPA generation during dialysis, with little effect on the KCCT.It is concluded that the anti-factor Xa activity of Org 10172 may reflect its ability to inhibit fibrin during dialysis and that single bolus injection of Org 10172 may be a useful alternative method of achieving anticoagulation.


2019 ◽  
Vol 25 (22) ◽  
pp. 2474-2479 ◽  
Author(s):  
Alisson Diego Machado ◽  
Gustavo Rosa Gentil Andrade ◽  
Jéssica Levy ◽  
Sara Silva Ferreira ◽  
Dirce Maria Marchioni

Background: Coronary Artery Calcification (CAC) is considered an important cardiovascular risk factor. There is evidence that CAC is associated with an increased risk of atherosclerosis, coronary events and cardiovascular mortality. Inflammation is one of the factors associated with CAC and despite the interest in antioxidant compounds that can prevent CAC, its association with antioxidants remains unclear. Objective: This study aimed to systematically review the association between vitamins and minerals with antioxidant effects and CAC in adults and older adults. Methods: We conducted a systematic review using PubMed for articles published until October 2018. We included studies conducted in subjects aged 18 years and older with no previous cardiovascular disease. Studies involving animal or in vitro experiments and the ones that did not use reference methods to assess the CAC, dietary intake or serum levels of vitamin or mineral were excluded. Results: The search yielded 390 articles. After removal of duplicates, articles not related to the review, review articles, editorials, hypothesis articles and application of the inclusion and exclusion criteria, 9 articles remained. The results of the studies included in this systematic review suggest that magnesium is inversely associated with CAC and results on the association between CAC and vitamin E have been conflicting. Conclusion: Additional prospective studies are needed to elucidate the role of these micronutrients on CAC.


2020 ◽  
Vol 26 (39) ◽  
pp. 4970-4981
Author(s):  
Yu-Tang Tung ◽  
Chun-Hsu Pan ◽  
Yi-Wen Chien ◽  
Hui-Yu Huang

Metabolic syndrome is an aggregation of conditions and associated with an increased risk of developing diabetes, obesity and cardiovascular diseases (CVD). Edible mushrooms are widely consumed in many countries and are valuable components of the diet because of their attractive taste, aroma, and nutritional value. Medicinal mushrooms are higher fungi with additional nutraceutical attributes having low-fat content and a transisomer of unsaturated fatty acids along with high fiber content, biologically active compounds such as polysaccharides or polysaccharide β-glucans, alkaloids, steroids, polyphenols and terpenoids. In vitro experiments, animal models, and even human studies have demonstrated not only fresh edible mushroom but also mushroom extract that has great therapeutic applications in human health as they possess many properties such as antiobesity, cardioprotective and anti-diabetic effect. They are considered as the unmatched source of healthy foods and drugs. The focus of this report was to provide a concise and complete review of the novel medicinal properties of fresh or dry mushroom and extracts, fruiting body or mycelium and its extracts, fiber, polysaccharides, beta-glucan, triterpenes, fucoidan, ergothioneine from edible mushrooms that may help to prevent or treat metabolic syndrome and associated diseases.


2020 ◽  
Vol 18 (2) ◽  
pp. 148-157 ◽  
Author(s):  
Triantafyllos Didangelos ◽  
Konstantinos Kantartzis

The cardiac effects of exogenously administered insulin for the treatment of diabetes (DM) have recently attracted much attention. In particular, it has been questioned whether insulin is the appropriate treatment for patients with type 2 diabetes mellitus and heart failure. While several old and some new studies suggested that insulin treatment has beneficial effects on the heart, recent observational studies indicate associations of insulin treatment with an increased risk of developing or worsening of pre-existing heart failure and higher mortality rates. However, there is actually little evidence that the associations of insulin administration with any adverse outcomes are causal. On the other hand, insulin clearly causes weight gain and may also cause serious episodes of hypoglycemia. Moreover, excess of insulin (hyperinsulinemia), as often seen with the use of injected insulin, seems to predispose to inflammation, hypertension, dyslipidemia, atherosclerosis, heart failure, and arrhythmias. Nevertheless, it should be stressed that most of the data concerning the effects of insulin on cardiac function derive from in vitro studies with isolated animal hearts. Therefore, the relevance of the findings of such studies for humans should be considered with caution. In the present review, we summarize the existing data about the potential positive and negative effects of insulin on the heart and attempt to answer the question whether any adverse effects of insulin or the consequences of hyperglycemia are more important and may provide a better explanation of the close association of DM with heart failure.


2021 ◽  
pp. 1-17
Author(s):  
Stefan Bernhard ◽  
Stefan Hug ◽  
Alexander Elias Paul Stratmann ◽  
Maike Erber ◽  
Laura Vidoni ◽  
...  

A sufficient response of neutrophil granulocytes stimulated by interleukin (IL)-8 is vital during systemic inflammation, for example, in sepsis or severe trauma. Moreover, IL-8 is clinically used as biomarker of inflammatory processes. However, the effects of IL-8 on cellular key regulators of neutrophil properties such as the intracellular pH (pH<sub>i</sub>) in dependence of ion transport proteins and during inflammation remain to be elucidated. Therefore, we investigated in detail the fundamental changes in pH<sub>i</sub>, cellular shape, and chemotactic activity elicited by IL-8. Using flow cytometric methods, we determined that the IL-8-induced cellular activity was largely dependent on specific ion channels and transporters, such as the sodium-proton exchanger 1 (NHE1) and non-NHE1-dependent sodium flux. Exposing neutrophils in vitro to a proinflammatory micromilieu with N-formyl-Met-Leu-Phe, LPS, or IL-8 resulted in a diminished response regarding the increase in cellular size and pH. The detailed kinetics of the reduced reactivity of the neutrophil granulocytes could be illustrated in a near-real-time flow cytometric measurement. Last, the LPS-mediated impairment of the IL-8-induced response in neutrophils was confirmed in a translational, animal-free human whole blood model. Overall, we provide novel mechanistic insights for the interaction of IL-8 with neutrophil granulocytes and report in detail about its alteration during systemic inflammation.


Sign in / Sign up

Export Citation Format

Share Document