scholarly journals The genetic basis of idiopathic pulmonary fibrosis

2015 ◽  
Vol 45 (6) ◽  
pp. 1717-1727 ◽  
Author(s):  
Jonathan A. Kropski ◽  
Timothy S. Blackwell ◽  
James E. Loyd

Throughout the past decade, there have been substantial advances in understanding the pathogenesis of idiopathic pulmonary fibrosis (IPF). Recently, several large genome-wide association and linkage studies have identified common genetic variants in more than a dozen loci that appear to contribute to IPF risk. In addition, family-based studies have led to the identification of rare genetic variants in genes related to surfactant function and telomere biology, and mechanistic studies suggest pathophysiological derangements associated with these rare genetic variants are also found in sporadic cases of IPF. Current evidence suggests that rather than existing as distinct syndromes, sporadic and familial cases of IPF (familial interstitial pneumonia) probably reflect a continuum of genetic risk. Rapidly evolving bioinformatic and molecular biology techniques, combined with next-generation sequencing technologies, hold great promise for developing a comprehensive, integrated approach to defining the fundamental molecular mechanisms that underlie IPF pathogenesis.

2020 ◽  
Author(s):  
Ignazio S. Piras ◽  
Christiane Bleul ◽  
Ashley Siniard ◽  
Amanda J. Wolfe ◽  
Matthew D. De Both ◽  
...  

AbstractCanine Idiopathic Pulmonary Fibrosis (CIPF) is a chronic fibrotic lung disease that is observed at a higher frequency in the West Highland White Terrier dog breed (WHWT) and may have molecular pathological overlap with human lung fibrotic disease. We conducted a Genome-Wide Association Study (GWAS) in the WHWT using Whole Genome Sequencing (WGS) to discover genetic variants associated with CIPF. Saliva-derived DNA samples were sequenced using the Riptide™ DNA library prep kit. After quality controls, 28 affected, 44 unaffected and 1,843,695 informative Single Nucleotide Polymorphisms (SNPs) were included in the GWAS. Data were analyzed both at the single SNP and gene levels using the GEMMA and GATES methods, respectively. We detected significant signals at the gene level in both the CPSF7 and SDHAF2 genes (adjusted p = 0.016 and p = 0.025, respectively), two overlapping genes located on chromosome 18. The top SNP for both genes was rs22669389, however it did not reach genome-wide significance in the GWAS (adjusted p = 0.078). Our studies provide, for the first time, candidate loci for CIPF in the WHWT. CPSF7 was recently associated with lung adenocarcinoma further highlighting the potential relevance of our results since IPF and lung cancer share several pathological mechanisms.


Genes ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 609
Author(s):  
Ignazio S. Piras ◽  
Christiane Bleul ◽  
Ashley Siniard ◽  
Amanda J. Wolfe ◽  
Matthew D. De Both ◽  
...  

Canine idiopathic pulmonary fibrosis (CIPF) is a chronic fibrotic lung disease that is observed at a higher frequency in the West Highland White Terrier dog breed (WHWT) and may have molecular pathological overlap with human lung fibrotic disease. We conducted a genome-wide association study (GWAS) in the WHWT using whole genome sequencing (WGS) to discover genetic variants associated with CIPF. Saliva-derived DNA samples were sequenced using the Riptide DNA library prep kit. After quality controls, 28 affected, 44 unaffected, and 1,843,695 informative single nucleotide polymorphisms (SNPs) were included in the GWAS. Data were analyzed both at the single SNP and gene levels using the GEMMA and GATES methods, respectively. We detected significant signals at the gene level in both the cleavage and polyadenylation specific factor 7 (CPSF7) and succinate dehydrogenase complex assembly factor 2 (SDHAF2) genes (adjusted p = 0.016 and 0.024, respectively), two overlapping genes located on chromosome 18. The top SNP for both genes was rs22669389; however, it did not reach genome-wide significance in the GWAS (adjusted p = 0.078). Our studies provide, for the first time, candidate loci for CIPF in the WHWT. CPSF7 was recently associated with lung adenocarcinoma, further highlighting the potential relevance of our results because IPF and lung cancer share several pathological mechanisms.


Thorax ◽  
2022 ◽  
pp. thoraxjnl-2021-217693
Author(s):  
Haruhiko Furusawa ◽  
Anna L Peljto ◽  
Avram D Walts ◽  
Jonathan Cardwell ◽  
Philip L Molyneaux ◽  
...  

A subset of patients with hypersensitivity pneumonitis (HP) develop lung fibrosis that is clinically similar to idiopathic pulmonary fibrosis (IPF). To address the aetiological determinants of fibrotic HP, we investigated whether the common IPF genetic risk variants were also relevant in study subjects with fibrotic HP. Our findings indicate that common genetic variants in TERC, DSP, MUC5B and IVD were significantly associated with fibrotic HP. These findings provide support for a shared etiology and pathogenesis between fibrotic HP and IPF.


Diagnostics ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 450
Author(s):  
Federica Galioto ◽  
Stefano Palmucci ◽  
Giovanna M. Astuti ◽  
Ada Vancheri ◽  
Giulio Distefano ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is a fibrotic lung disease with uncertain origins and pathogenesis; it represents the most common interstitial lung disease (ILD), associated with a pathological pattern of usual interstitial pneumonitis (UIP). This disease has a poor prognosis, having the most lethal prognosis among ILDs. In fact, the progressive fibrosis related to IPF could lead to the development of complications, such as acute exacerbation, lung cancer, infections, pneumothorax and pulmonary hypertension. Pneumologists, radiologists and pathologists play a key role in the identification of IPF disease, and in the characterization of its complications—which unfortunately increase disease mortality and reduce overall survival. The early identification of these complications is very important, and requires an integrated approach among specialists, in order to plane the correct treatment. In some cases, the degree of severity of patients having IPF complications may require a personalized approach, based on palliative care services. Therefore, in this paper, we have focused on clinical and radiological features of the complications that occurred in our IPF patients, providing a comprehensive and accurate pictorial essay for clinicians, radiologists and surgeons involved in their management.


2019 ◽  
Vol 6 (1) ◽  
pp. e000439 ◽  
Author(s):  
Fasihul Khan ◽  
Iain Stewart ◽  
Lucy Howard ◽  
Tricia M McKeever ◽  
Steve Jones ◽  
...  

IntroductionThe Its Not JUST Idiopathic pulmonary fibrosis Study (INJUSTIS) is a multicentre, prospective, observational cohort study. The aims of this study are to identify genetic, serum and other biomarkers that may identify specific molecular mechanisms, reflecting disease endotypes that are shared among patients with progressive pulmonary fibrosis regardless of aetiology. Furthermore, it is anticipated that these biomarkers will help predict fibrotic activity that may identify patterns of disease behaviour with greater accuracy than current clinical phenotyping.Methods and analysis200 participants with the multidisciplinary team confirmed fibrotic lung disease (50 each of rheumatoid-interstitial lung disease (ILD), asbestosis, chronic hypersensitivity pneumonitis and unclassifiable ILD) and 50 idiopathic pulmonary fibrosis participants, recruited as positive controls, will be followed up for 2 years. Participants will have blood samples, lung function tests, quality of life questionnaires and a subgroup will be offered bronchoscopy. Participants will also be given the option of undertaking blinded home handheld spirometry for the first 3 months of the study. The primary end point will be identification of a biomarker that predicts disease progression, defined as 10% relative change in forced vital capacity (FVC) or death at 12 months.Ethics and disseminationThe trial has received ethical approval from the National Research Ethics Committee Nottingham (18/EM/0139). All participants must provide written informed consent. The trial will be overseen by the INJUSTIS steering group that will include a patient representative, and an independent chairperson. The results from this study will be submitted for publication in peer-reviewed journals and disseminated at regional and national conferences.Trial registration numberNCT03670576.


2020 ◽  
Vol 47 (12) ◽  
pp. 9811-9820
Author(s):  
Yue Fang ◽  
Jingya Tian ◽  
Yumei Fan ◽  
Pengxiu Cao

2015 ◽  
Vol 112 (16) ◽  
pp. E2048-E2057 ◽  
Author(s):  
Gani Oruqaj ◽  
Srikanth Karnati ◽  
Vijith Vijayan ◽  
Lakshmi Kanth Kotarkonda ◽  
Eistine Boateng ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is a devastating disease, and its pathogenic mechanisms remain incompletely understood. Peroxisomes are known to be important in ROS and proinflammatory lipid degradation, and their deficiency induces liver fibrosis. However, altered peroxisome functions in IPF pathogenesis have never been investigated. By comparing peroxisome-related protein and gene expression in lung tissue and isolated lung fibroblasts between human control and IPF patients, we found that IPF lungs exhibited a significant down-regulation of peroxisomal biogenesis and metabolism (e.g., PEX13p and acyl-CoA oxidase 1). Moreover, in vivo the bleomycin-induced down-regulation of peroxisomes was abrogated in transforming growth factor beta (TGF-β) receptor II knockout mice indicating a role for TGF-β signaling in the regulation of peroxisomes. Furthermore, in vitro treatment of IPF fibroblasts with the profibrotic factors TGF-β1 or tumor necrosis factor alpha (TNF-α) was found to down-regulate peroxisomes via the AP-1 signaling pathway. Therefore, the molecular mechanisms by which reduced peroxisomal functions contribute to enhanced fibrosis were further studied. Direct down-regulation of PEX13 by RNAi induced the activation of Smad-dependent TGF-β signaling accompanied by increased ROS production and resulted in the release of cytokines (e.g., IL-6, TGF-β) and excessive production of collagen I and III. In contrast, treatment of fibroblasts with ciprofibrate or WY14643, PPAR-α activators, led to peroxisome proliferation and reduced the TGF-β–induced myofibroblast differentiation and collagen protein in IPF cells. Taken together, our findings suggest that compromised peroxisome activity might play an important role in the molecular pathogenesis of IPF and fibrosis progression, possibly by exacerbating pulmonary inflammation and intensifying the fibrotic response in the patients.


2016 ◽  
Vol 310 (10) ◽  
pp. L940-L954 ◽  
Author(s):  
Irina G. Luzina ◽  
Virginia Lockatell ◽  
Sang W. Hyun ◽  
Pavel Kopach ◽  
Phillip H. Kang ◽  
...  

Idiopathic pulmonary fibrosis (IPF) poses challenges to understanding its underlying cellular and molecular mechanisms and the development of better therapies. Previous studies suggest a pathophysiological role for neuraminidase 1 (NEU1), an enzyme that removes terminal sialic acid from glycoproteins. We observed increased NEU1 expression in epithelial and endothelial cells, as well as fibroblasts, in the lungs of patients with IPF compared with healthy control lungs. Recombinant adenovirus-mediated gene delivery of NEU1 to cultured primary human cells elicited profound changes in cellular phenotypes. Small airway epithelial cell migration was impaired in wounding assays, whereas, in pulmonary microvascular endothelial cells, NEU1 overexpression strongly impacted global gene expression, increased T cell adhesion to endothelial monolayers, and disrupted endothelial capillary-like tube formation. NEU1 overexpression in fibroblasts provoked increased levels of collagen types I and III, substantial changes in global gene expression, and accelerated degradation of matrix metalloproteinase-14. Intratracheal instillation of NEU1 encoding, but not control adenovirus, induced lymphocyte accumulation in bronchoalveolar lavage samples and lung tissues and elevations of pulmonary transforming growth factor-β and collagen. The lymphocytes were predominantly T cells, with CD8+ cells exceeding CD4+ cells by nearly twofold. These combined data indicate that elevated NEU1 expression alters functional activities of distinct lung cell types in vitro and recapitulates lymphocytic infiltration and collagen accumulation in vivo, consistent with mechanisms implicated in lung fibrosis.


Sign in / Sign up

Export Citation Format

Share Document