scholarly journals Betulinic Acid Affects the Energy-Related Proteomic Profiling in Pancreatic Ductal Adenocarcinoma Cells

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2482
Author(s):  
Ching-Feng Chiu ◽  
Hsin-Yi Chang ◽  
Chun-Yine Huang ◽  
Chen-Zou Mau ◽  
Tzu-Ting Kuo ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a 5-year survival rate of <8%. Therefore, finding new treatment strategies against PDAC cells is an imperative issue. Betulinic acid (BA), a plant-derived natural compound, has shown great potential to combat cancer owing to its versatile physiological functions. In this study, we observed the impacts of BA on the cell viability and migratory ability of PDAC cell lines, and screened differentially expressed proteins (DEPs) by an LC-MS/MS-based proteomics analysis. Our results showed that BA significantly inhibited the viability and migratory ability of PDAC cells under a relatively low dosage without affecting normal pancreatic cells. Moreover, a functional analysis revealed that BA-induced downregulation of protein clusters that participate in mitochondrial complex 1 activity and oxidative phosphorylation, which was related to decreased expressions of RNA polymerase mitochondrial (POLRMT) and translational activator of cytochrome c oxidase (TACO1), suggesting that the influence on mitochondrial function explains the effect of BA on PDAC cell growth and migration. In addition, BA also dramatically increased Apolipoprotein A1 (APOA1) expression and decreased NLR family CARD domain-containing protein 4 (NLRC4) expression, which may be involved in the dampening of PDAC migration. Notably, altered expression patterns of APOA1 and NLRC4 indicated a favorable clinical prognosis of PDAC. Based on these findings, we identified potential proteins and pathways regulated by BA from a proteomics perspective, which provides a therapeutic window for PDAC.

2018 ◽  
Vol 19 (10) ◽  
pp. 3234 ◽  
Author(s):  
Justyna Kutkowska ◽  
Leon Strzadala ◽  
Andrzej Rapak

Pancreatic ductal adenocarcinoma (PDAC) is one of the most deadly cancers in the world due to late diagnosis and poor response to available treatments. It is important to identify treatment strategies that will increase the efficacy and reduce the toxicity of the currently used therapeutics. In this study, the PDAC cell lines AsPC-1, BxPC-3, and Capan-1 were treated with sorafenib and betulinic acid alone and in combination. We examined the effect of combined treatments on viability (MTS test), proliferation and apoptosis (annexin V staining), cell cycle arrest (PI staining), alterations in signaling pathways (Western blotting), and colony-forming ability. The combination of sorafenib with betulinic acid inhibited the viability and proliferation of PDAC cells without the induction of apoptosis. The antiproliferative effect, caused by G2 cell cycle arrest, was strongly associated with increased expression of p21 and decreased expression of c-Myc and cyclin D1, and was induced only by combined treatment. Additionally, decreased proliferation could also be associated with the inhibition of the P13K/Akt and MAPK signaling pathways. Importantly, combination treatment reduced the colony-forming ability of PDAC cells, as compared to both compounds alone. Collectively, we showed that combined treatment with low concentrations of sorafenib and betulinic acid had the capacity to inhibit proliferation and abolish clonogenic activity in PDAC cell lines.


2020 ◽  
Vol 46 (2) ◽  
pp. e123
Author(s):  
Floris Vuijk ◽  
Lizzie de Muynck ◽  
Lotte Franken ◽  
Olivier Busch ◽  
Hanneke Wilmink ◽  
...  

2021 ◽  
Author(s):  
Cheng Ding ◽  
Yatong Li ◽  
Shunda Wang ◽  
Cheng Xing ◽  
Lixin Chen ◽  
...  

Abstract BackgroundPancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with an extremely poor prognosis and a high mortality rate. Genome-wide studies have shown that the SLIT/ROBO signaling pathway plays an important role in pancreatic tumor development and progression. However, the effect and mechanism of ROBO2 in the progression of pancreatic cancer remains largely unknown.MethodsIn this study, real-time polymerase chain reaction (RT-PCR) and western blot analyses were adopted to evaluate the expression level of ROBO2 and proteins in pancreatic cell lines. Cell migration and invasion and cell proliferation were conducted in AsPC-1 and MIA PaCa-2 cell lines. RNA sequencing and western blot were undertaken to explore the mechanisms and potential targeted molecules. ROBO2 expression in tumor tissues was evaluated by immunohistochemistry in 95 patients.ResultsROBO2 expression was downregulated in PDAC cell lines and tissue samples. A high level of ROBO2 was associated with good overall survival. Upregulation of ROBO2 inhibited PDAC cell proliferation, migration, and invasion, whereas the opposite results were found in the ROBO2 downregulation group. In addition, xenograft animal models further confirmed the effect of ROBO2 on proliferation. Finally, the RNA sequencing results indicated that ROBO2 facilitates anti-tumorigenicity partly via inhibiting ECM1 in PDAC. ConclusionsOur work suggests that ROBO2 inhibits tumor progression in PDAC and may serve as a predictive biomarker and therapeutic target in PDAC.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A948-A949
Author(s):  
Maggie Phillips ◽  
Michael Ware ◽  
Cameron Herting ◽  
Thomas Mace ◽  
Shishir Maithel ◽  
...  

BackgroundPancreatic ductal adenocarcinoma (PDAC) is refractory to immunotherapy due in part to cellular cross-talk with cancer associated fibroblasts (CAFs). These interactions shape the microenvironment in a manner that is profoundly immunosuppressive. Our group is identifying novel targets in the PDAC stroma that can be manipulated to enhance immunotherapy efficacy. We hypothesize dysregulation of the serine protease, CD26/DPP4 in PDAC contributes to the limited efficacy of immunotherapy. Further, we posit targeting CD26 enzymatic activity using inhibitors that are FDA-approved for adult patients with Type 2 Diabetes Mellitus can enhance the efficacy of immunotherapy in PDAC.MethodsPrimary CAFs isolated from patient PDAC resection specimens under an IRB-approved protocol, were subject to NanoString analysis.1 CD26 protein expression was measured in primary and immortalized CAFs and PDAC cells by immunoblot, flow cytometry and immunofluorescence, while ELISA detected soluble CD26. For in vivo efficacy, luciferase-expressing KPC-tumor cells were implanted orthotopically in the pancreas of immune-competent C57BL/6 mice. Bioluminescence imaging (BLI) confirmed established tumors and mice were randomized to sitagliptin (75 mg/kg in drinking water, CD26/DPP4 inhibitor), anti-PD-L1 Ab (200 ug 2x/week), or both combined for 3 weeks. Controls received vehicle or isotype control Ab. BLI utilized to track tumor progression and tissues harvested for analysis at study endpoint (day 18 of treatment).ResultsNanoString analysis identified CD26/DPP4 as significantly upregulated in RNA transcripts from primary CAFs vs. fibroblasts from normal pancreas (figure 1). We confirmed abundant CD26 expression on patient-derived CAFs and immortalized CAF cell lines, however, lower CD26 expression was observed on human PDAC cell lines (HPAC, PANC-1) by immunoblot, flow cytometry and immunofluorescence (figure 5).Abstract 904 Figure 1(A) Schema for analysis of transcript from n=10 primary CAFs (PSC) from PDAC patients vs. normal human pancreatic fibroblasts (HPPFC) via NanoString nCounter PanCancer Immune Profiling Panel. (B) Heat map of gene expression with upregulate DPP4 or CD26 transcript detected. Adapted from Mace et al., 2016.Abstract 904 Figure 2Validation of CD26 protein expression in human PDAC-derived CAF and PDAC cell lines by immunoblot analysisAbstract 904 Figure 3Analysis of surface human CD26 expression in PBMCs, PDAC-derived CAFs (h-iPSC-PDAC-1), and PDAC cells (PANC-1) by flow cytometry. Histograms representing human surface CD26 expressionAbstract 904 Figure 4Immunofluorescence analysis of CD26/DPP4 cellular localization in a human PDAC-derived CAF cell lineAbstract 904 Figure 5Combined Sitagliptin and PD-L1 blockade in a murine orthotopic model of PDAC. Fold change in tumor volume, determined by BLI, comparing baseline (Day 0 of treatment) to Day 18 of treatment. Each bar represents fold change in BLI determined tumor volume for each animalConclusionsOur results are the first to describe CD26 expression on PDAC-derived CAFs and indicate that sitagliptin augments anti-tumor activity of anti-PD-L1 in PDAC tumor-bearing mice. Our ongoing work will provide insight into specific immune cell populations responsible for efficacy of immunotherapy in murine models of PDAC, and the role of CD26 in various cellular compartments within the PDAC microenvironment.ReferencesMace TA, Shakya R, Pitarresi JR, Swanson B, McQuinn CW, Loftus S, Nordquist E, Cruz-Monserrate Z, Yu L, Young G, Zhong X, Zimmers TA, Ostrowski MC, Ludwig T, Bloomston M, Bekaii-Saab T, Lesinski GB. IL-6 and PD-L1 antibody blockade combination therapy reduces tumour progression in murine models of pancreatic cancer. Gut 2018;67(2):320–32.


2021 ◽  
Author(s):  
Manoj M Wagle ◽  
Ananya Rao Kedige ◽  
Shama P Kabekkodu ◽  
Sandeep Mallya

Abstract Pancreatic ductal adenocarcinoma (PDAC) is a malignancy associated with rapid progression and an abysmal prognosis. It has been reported that chronic pancreatitis can increase the risk of developing PDAC by 16-fold. Our study aims to identify the key genes and biochemical pathways mediating pancreatitis and PDAC. The gene expression datasets were retrieved from the EMBL-EBI ArrayExpress and NCBI GEO database. A total of 172 samples of normal pancreatic tissue, 68 samples of pancreatitis, and 306 samples of PDAC were used in this study. The differentially expressed genes (DEGs) identified were used to perform downstream analysis for ontology, interaction, and associated pathways. Furthermore, hub gene expression was validated using the GEPIA2 tool and survival analysis using the Kaplan-Meier (KM) plotter. The potential druggability of the hub genes identified was determined using the Drug-Gene Interaction Database (DGIdb). Our study identified a total of 45 genes found to have altered expression levels in both PDAC and pancreatitis. Over-representation analysis revealed that protein digestion and absorption pathway, ECM-receptor interaction pathway, PI3k-Akt signaling pathway, and proteoglycans in cancer pathways as significantly enriched. Module analysis revealed 15 hub genes with 92 edges, of which 14 were found to be in the druggable genome category. Through bioinformatics analysis, we identified key genes and biochemical pathways disrupted in pancreatitis and PDAC. The results can provide new insights into targeted therapy and intervening therapeutically at an earlier stage can be used as an effective strategy to decrease the incidence and severity of PDAC.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sung-Hsin Kuo ◽  
Shih-Hung Yang ◽  
Ming-Feng Wei ◽  
Hsiao-Wei Lee ◽  
Yu-Wen Tien ◽  
...  

Abstract Background We previously demonstrated that nuclear BCL10 translocation participates in the instigation of NF-κB in breast cancer and lymphoma cell lines. In this study, we assessed whether nuclear BCL10 translocation is clinically significant in advanced and metastatic pancreatic ductal adenocarcinoma (PDAC). Method and materials We analyzed the expression of BCL10-, cell cycle-, and NF-κB- related signaling molecules, and the DNA-binding activity of NF-κB in three PDAC cell lines (mutant KRAS lines: PANC-1 and AsPC-1; wild-type KRAS line: BxPC-3) using BCL10 short hairpin RNA (shBCL10). To assess the anti-tumor effect of BCL10 knockdown in PDAC xenograft model, PANC-1 cells treated with or without shBCL10 transfection were inoculated into the flanks of mice. We assessed the expression patterns of BCL10 and NF-κB in tumor cells in 136 patients with recurrent, advanced, and metastatic PDAC using immunohistochemical staining. Results We revealed that shBCL10 transfection caused cytoplasmic translocation of BCL10 from the nuclei, inhibited cell viability, and enhanced the cytotoxicities of gemcitabine and oxaliplatin in three PDAC cell lines. Inhibition of BCL10 differentially blocked cell cycle progression in PDAC cell lines. Arrest at G1 phase was noted in wild-type KRAS cell lines; and arrest at G2/M phase was noted in mutant KRAS cell lines. Furthermore, shBCL10 transfection downregulated the expression of phospho-CDC2, phospho-CDC25C, Cyclin B1 (PANC-1), Cyclins A, D1, and E, CDK2, and CDK4 (BxPC-3), p-IκBα, nuclear expression of BCL10, BCL3, and NF-κB (p65), and attenuated the NF-κB pathway activation and its downstream molecule, c-Myc, while inhibition of BCL10 upregulated expression of p21, and p27 in both PANC-1 and BxPC-3 cells. In a PANC-1-xenograft mouse model, inhibition of BCL10 expression also attenuated the tumor growth of PDAC. In clinical samples, nuclear BCL10 expression was closely associated with nuclear NF-κB expression (p < 0.001), and patients with nuclear BCL10 expression had the worse median overall survival than those without nuclear BCL10 expression (6.90 months versus 9.53 months, p = 0.019). Conclusion Nuclear BCL10 translocation activates NF-κB signaling and contributes to tumor progression and poor prognosis of advanced/metastatic PDAC.


Author(s):  
Taoyue Yang ◽  
Peng Shen ◽  
Qun Chen ◽  
Pengfei Wu ◽  
Hao Yuan ◽  
...  

Abstract Background Circular RNAs (circRNAs) are becoming a unique member of non-coding RNAs (ncRNAs) with emerging evidence of their regulatory roles in various cancers. However, with regards to pancreatic ductal adenocarcinoma (PDAC), circRNAs biological functions remain largely unknown and worth investigation for potential therapeutic innovation. Methods In our previous study, next-generation sequencing was used to identify differentially expressed circRNAs in 3 pairs of PDAC and adjacent normal tissues. Further validation of circRHOBTB3 expression in PDAC tissues and cell lines and gain-and-loss function experiments verified the oncogenic role of circRHOBTB3. The mechanism of circRHOBTB3 regulatory role was validated by pull-down assays, RIP, luciferase reporter assays. The autophagy response of PANC-1 and MiaPaca-2 cells were detected by mCherry-GFP-LC3B labeling and confocal microscopy, transmission electron microscopy and protein levels of LC3B or p62 via Western blot. Results circRHOBTB3 is highly expressed in PDAC cell lines and tissues, which also promotes PDAC autophagy and then progression in vitro and in vivo. Mechanistically, circRHOBTB3 directly binds to miR-600 and subsequently acts as a miRNA-sponge to maintain the expression level of miR-600-targeted gene NACC1, which facilitates the autophagy response of PDAC cells for adaptation of proliferation via Akt/mTOR pathway. Moreover, the RNA-binding protein FUS (FUS) directly binds to pre-RHOBTB3 mRNA to mediate the biogenesis of circRHOBTB3. Clinically, circRHOBTB3, miR-600 and NACC1 expression levels are correlated with the prognosis of PDAC patients and serve as independent risk factors for PDAC patients. Conclusions FUS-mediated circRHOBTB3 functions as a tumor activator to promote PDAC cell proliferation by modulating miR-600/NACC1/Akt/mTOR axis regulated autophagy.


Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1501
Author(s):  
Rahul R. Singh ◽  
Jiyan Mohammad ◽  
Megan Orr ◽  
Katie M. Reindl

Glutathione S-transferase pi-1 (GSTP1) plays an important role in regulating oxidative stress by conjugating glutathione to electrophiles. GSTP1 is overexpressed in breast, colon, lung, and prostate tumors, where it contributes to tumor progression and drug resistance; however, the role of GSTP1 in pancreatic ductal adenocarcinoma (PDAC) is not well understood. Using shRNA, we knocked down GSTP1 expression in three different PDAC cell lines and determined the effect on cell proliferation, cell cycle progression, and reactive oxygen species (ROS) levels. Our results show GSTP1 knockdown reduces PDAC cell growth, prolongs the G0/G1 phase, and elevates ROS in PDAC cells. Furthermore, GSTP1 knockdown results in the increased phosphorylation of c-Jun N-terminal kinase (JNK) and c-Jun and the decreased phosphorylation of extracellular signal-regulated kinase (ERK), p65, the reduced expression of specificity protein 1 (Sp1), and the increased expression of apoptosis-promoting genes. The addition of the antioxidant glutathione restored cell viability and returned protein expression levels to those found in control cells. Collectively, these data support the working hypothesis that the loss of GSTP1 elevates oxidative stress, which alters mitogen-activated protein (MAP) kinases and NF-κB signaling, and induces apoptosis. In support of these in vitro data, nude mice bearing orthotopically implanted GSTP1-knockdown PDAC cells showed an impressive reduction in the size and weight of tumors compared to the controls. Additionally, we observed reduced levels of Ki-67 and increased expression of cleaved caspase-3 in GSTP1-knockdown tumors, suggesting GSTP1 knockdown impedes proliferation and upregulates apoptosis in PDAC cells. Together, these results indicate that GSTP1 plays a significant role in PDAC cell growth and provides support for the pursuit of GSTP1 inhibitors as therapeutic agents for PDAC.


Cells ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 91
Author(s):  
Kee Voon Chua ◽  
Chi-Shuan Fan ◽  
Chia-Chi Chen ◽  
Li-Li Chen ◽  
Shu-Chen Hsieh ◽  
...  

Octyl gallate (OG) is a common antioxidant and preservative safely used in food additive and cosmetics. In this study, OG exhibited an activity to induce apoptosis in pancreatic ductal adenocarcinoma (PDAC) cells. It induced BNIP3L level and facilitated physical associations of BNIP3L with Bcl-2 as well as Bcl-XL to set the mitochondrial Bax/Bak channels free for cytochrome c release. In addition, in vivo evaluation also showed that daily oral administration of OG was efficacious to prevent the tumor growth of PDAC cell grafts. Considering PDAC is a desmoplastic tumor consisting of many cancer-associated fibroblasts (CAFs), we further evaluated the efficacy of OG in a CAFs-involved PDAC mouse model. Endothelial-to-mesenchymal transition (EndoMT) is an important source of CAFs. The mix of EndoMT-derived CAFs with PDAC cell grafts significantly recruited myeloid-derived macrophages but prevented immune T cells. HSP90α secreted by EndoMT-derived CAFs further induced macrophage M2-polarization and more HSP90α secretion to expedite PDAC tumor growth. OG exhibited its potent efficacy against the tumor growth, M2-macrophages, and serum HSP90α level in the EndoMT-involved PDAC mouse model. CD91 and TLR4 are cell-surface receptors for extracellular HSP90α (eHSP90α). OG blocked eHSP90α–TLR4 ligation and, thus, prevented eHSP90α-induced M2-macrophages and more HSP90α secretion from macrophages and PDAC cells.


Sign in / Sign up

Export Citation Format

Share Document