scholarly journals microRNA-199a-5p regulates epithelial-to-mesenchymal transition in diabetic cataract by targeting SP1 gene

2020 ◽  
Vol 26 (1) ◽  
Author(s):  
Xin Liu ◽  
Qiaoyun Gong ◽  
Longfei Yang ◽  
Min Liu ◽  
Lingzhi Niu ◽  
...  

Abstract Background As a common ocular complication of diabetes mellitus, diabetic cataract is becoming a leading cause of visual impairment. The progression of diabetic cataract progression involves epithelial-to-mesenchymal transition (EMT), the precise role of which remains to be investigated. As microRNAs (miRNAs) are suggested to be involved in the pathogenesis of many diseases, identification of aberrantly expressed miRNAs in diabetic lens epithelial cells (LECs) and their targets may provide insights into our understanding of diabetic cataract and potential therapeutic targets. Methods Diabetic cataract capsules and LECs exposed to high glucose (25 mmol/L, 1–5 days) were used to mimic the model. Quantitative RT-PCR was performed to evaluate the differential expression of miRNA. Dual luciferase reporter assay was used to identify the binding target of miR-199a-5p. The expression of EMT-associated proteins was determined by immunofluorescence and Western blot analysis. Results Our results showed the differential expression of miR-9, -16, -22, -199a and -204. MiR-199a was downregulated in diabetic cataract capsule and hyperglycemia-conditioned human LECs. Specific protein 1 could be directly targeted and regulated by miR-199a in LECs and inhibit EMT in diabetic LECs. Conclusion Our findings implied miR-199a could be a therapeutic target by regulating SP1 directly to affect EMT in diabetic cataract and provided novel insights into the pathogenesis of diabetic cataract.

2021 ◽  
Author(s):  
Heyang Xu ◽  
Qiusheng Lan ◽  
Yongliang Huang ◽  
Yang Zhang ◽  
Yujie Zeng ◽  
...  

Abstract Background: Liver metastasis is the most common cause of death in patients with colorectal cancer (CRC). Phosphatase of regenerating liver-3 induces CRC metastasis by epithelial-to-mesenchymal transition, which promotes CRC cell liver metastasis. Mesenchymal-to-epithelial transition (MET), the opposite of epithelial-to-mesenchymal transition, has been proposed as a mechanism for the establishment of metastatic neoplasms. However, the molecular mechanism of MET remains unclear. Methods: Using Immunohistochemistry, western blotting,invasion assays, real-time quantitative PCR, chromatin immunoprecipitation, luciferase reporter assays, human miRNA arrays, and xenograft mouse model, we determined the role of hepatocyte exosome-derived miR-203a-3p in CRC MET.Results: In our study, we found that miR-203a-3p derived from hepatocyte exosomes increased colorectal cancer cells E-cadherin expression, inhibited Src expression, and reduced activity. In this way miR-203a-3p induced the decreased invasion rate of CRC cells.Coclusion: MiR-203a-3p derived from hepatocyte exosomes plays an important role of CRC cells to colonize in liver.


2020 ◽  
Vol 40 (6) ◽  
Author(s):  
Zhenkun Yan ◽  
Miaomiao Bi ◽  
Qiyu Zhang ◽  
Yumei Song ◽  
Sen Hong

Abstract To explore the role of long-chain non-coding RNA (lncRNA) taurine up-regulated gene 1 (TUG1) in the development of colorectal cancer (CRC) via the miR-138-5p/zinc finger E-box-binding homeobox 2 (ZEB2) axis. Eighty-four CRC tissue specimens and 84 corresponding paracancerous tissue specimens were sampled from 84 patients with CRC admitted to the First Hospital of Jilin University from January 2018 to September 2019. The TUG1 expression in the specimens was determined, and its value in diagnosis and prognosis of CRC was analyzed. Additionally, constructed stable and transient overexpresison vectors and inhibition vectors were transfected into CRC cells. The MTT, transwell, and flow cytometry were adopted for analysis on the proliferation, invasion, and apoptosis of transfected cells, respectively, and a dual luciferase reporter (DLR) assay was carried out for correlation determination between TUG1 and miR-138-5p and between miR-138-5p and ZEB2. TUG1 was up-regulated in CRC, and serum TUG1 could be adopted as a diagnostic marker of CRC, with area-under-the-curve (AUC) larger than 0.8. In addition, siRNA-TUG1, shRNA-TUG1, miR-138-5p-mimics, and miR-138-5p-inhibitor were transfected into cells, and it turned out that overexpressing miR-138-5p and inhibiting ZEB2 exerted the same effects. The DLR assay revealed that TUG1 was able to targetedly regulate miR-138-5p, and miR-138-5p could targetedly regulate ZEB2, and in vitro experiments revealed that TUG1 could affect the epithelial-to-mesenchymal transition (EMT) of CRC via the miR-138-5p/ZEB2 axis. TUG1 could promote the development of CRC via the miR-138-5p/ZEB2 axis.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Heyang Xu ◽  
Qiusheng Lan ◽  
Yongliang Huang ◽  
Yang Zhang ◽  
Yujie Zeng ◽  
...  

Abstract Background Liver metastasis is the most common cause of death in patients with colorectal cancer (CRC). Phosphatase of regenerating liver-3 induces CRC metastasis by epithelial-to-mesenchymal transition, which promotes CRC cell liver metastasis. Mesenchymal-to-epithelial transition (MET), the opposite of epithelial-to-mesenchymal transition, has been proposed as a mechanism for the establishment of metastatic neoplasms. However, the molecular mechanism of MET remains unclear. Methods Using Immunohistochemistry, western blotting, invasion assays, real-time quantitative PCR, chromatin immunoprecipitation, luciferase reporter assays, human miRNA arrays, and xenograft mouse model, we determined the role of hepatocyte exosome-derived miR-203a-3p in CRC MET. Results In our study, we found that miR-203a-3p derived from hepatocyte exosomes increased colorectal cancer cells E-cadherin expression, inhibited Src expression, and reduced activity. In this way miR-203a-3p induced the decreased invasion rate of CRC cells. Coclusion MiR-203a-3p derived from hepatocyte exosomes plays an important role of CRC cells to colonize in liver.


2015 ◽  
Vol 35 (5) ◽  
pp. 1764-1772 ◽  
Author(s):  
Weidong Wu ◽  
Honghua Ding ◽  
Jun Cao ◽  
Weihao Zhang

Background/Aims: The Snail family of transcription factors controls epithelial to mesenchymal transition (EMT), a process associated with tumorigenesis originated from epithelial cells. Snail1 is a member from Snail family and upregulation of Snail1 has been detected in gastric cancer (GC), suggesting a potential role of Snail1 in GC metastasis. We have recently reported that FBXL5 regulates cortactin by inducing its ubiquitylation and subsequent proteasomal degradation, resulting in inhibition of metastasis of GC. However, a role of FBXL4 in regulation of other EMT-associated proteins is not unknown. Methods: The levels of FBXL5 and Snail1 as well as their relationship were determined in GC specimen. Co-immunoprecipitation (IP) was performed to detect the interaction between Snail1 and FBXL5 in GC cells. The effects on Snail1 by FBXL5 were examined by overexpression of depletion of FBXL5 in GC cells. The invasiveness of the FBXL5-modified GC cells was examined in both scratch wound healing assay and transwell matrix penetration assay. Results: FBXL5 also physiologically interacted with Snail1. FBXL5 inhibited Snail1 to suppress GC cell invasiveness. Conclusion: FBXL5 negatively regulates several EMT-enhancing factors. FBXL5 is an attractive novel target for inhibiting invasion and metastasis of GC cells.


Author(s):  
Cong Wang ◽  
Chuzhi Shang ◽  
Xiaohong Gai ◽  
Tao Song ◽  
Shaoshan Han ◽  
...  

BackgroundSulfatase 2 (SULF2) removes the 6-O-sulfate groups from heparan sulfate proteoglycans (HSPG) and consequently alters the binding sites for various signaling molecules. Here, we elucidated the role of SULF2 in the differentiation of hepatic stellate cells (HSCs) into carcinoma-associated fibroblasts (CAFs) in the hepatocellular carcinoma (HCC) microenvironment and the mechanism underlying CAF-mediated HCC growth.MethodsThe clinical relevance of SULF2 and CAFs was examined using in silico and immunohistochemical (IHC) analyses. Functional studies were performed to evaluate the role of SULF2 in the differentiation of HSCs into CAFs and elucidate the mechanism underlying CAF-mediated HCC growth. Mechanistic studies were performed using the chromatin immunoprecipitation, luciferase reporter, and RNA immunoprecipitation assays. The in vitro findings were verified using the nude HCC xenograft mouse model.ResultsThe Cancer Genome Atlas (TCGA) database and IHC analyses revealed that the expression of CAF markers, which was positively correlated with that of SULF2 in the HCC tissues, predicted unfavorable postsurgical outcomes. Co-culturing HSCs with HCC cells expressing SULF2 promoted CAF differentiation. Additionally, CAFs repressed HCC cell apoptosis by activating the SDF-1/CXCR4/PI3K/AKT signaling pathway. Meanwhile, SULF2-induced CAFs promoted epithelial-to-mesenchymal transition (EMT) of HCC cells by modulating the SDF-1/CXCR4/OIP5-AS1/miR-153-3p/SNAI1 axis. Studies using HCC xenograft mouse models demonstrated that OIP5-AS1 induced EMT by upregulating SNAI1 and promoted HCC growth in vivo.ConclusionThese data indicated that SULF2 secreted by the HCC cells induced the differentiation of HSCs into CAFs through the TGFβ1/SMAD3 signaling pathway. SULF2-induced CAFs attenuated HCC apoptosis by activating the SDF-1/CXCR4/PI3K/AKT signaling pathway and induced EMT through the SDF-1/CXCR4/OIP5-AS1/miR-153-3p/SNAI1 axis. This study revealed a novel mechanism involved in the crosstalk between HCC cells and CAFs in the tumor microenvironment, which can aid in the development of novel and efficient therapeutic strategies for primary liver cancer.


2019 ◽  
Vol 63 (5) ◽  
pp. 579-594 ◽  
Author(s):  
Guillem Lambies ◽  
Antonio García de Herreros ◽  
Víctor M. Díaz

Abstract Cell migration is a multifactorial/multistep process that requires the concerted action of growth and transcriptional factors, motor proteins, extracellular matrix remodeling and proteases. In this review, we focus on the role of transcription factors modulating Epithelial-to-Mesenchymal Transition (EMT-TFs), a fundamental process supporting both physiological and pathological cell migration. These EMT-TFs (Snail1/2, Twist1/2 and Zeb1/2) are labile proteins which should be stabilized to initiate EMT and provide full migratory and invasive properties. We present here a family of enzymes, the deubiquitinases (DUBs) which have a crucial role in counteracting polyubiquitination and proteasomal degradation of EMT-TFs after their induction by TGFβ, inflammatory cytokines and hypoxia. We also describe the DUBs promoting the stabilization of Smads, TGFβ receptors and other key proteins involved in transduction pathways controlling EMT.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1239
Author(s):  
Leila Jahangiri ◽  
Tala Ishola ◽  
Perla Pucci ◽  
Ricky M. Trigg ◽  
Joao Pereira ◽  
...  

Cancer stem cells (CSCs) possess properties such as self-renewal, resistance to apoptotic cues, quiescence, and DNA-damage repair capacity. Moreover, CSCs strongly influence the tumour microenvironment (TME) and may account for cancer progression, recurrence, and relapse. CSCs represent a distinct subpopulation in tumours and the detection, characterisation, and understanding of the regulatory landscape and cellular processes that govern their maintenance may pave the way to improving prognosis, selective targeted therapy, and therapy outcomes. In this review, we have discussed the characteristics of CSCs identified in various cancer types and the role of autophagy and long noncoding RNAs (lncRNAs) in maintaining the homeostasis of CSCs. Further, we have discussed methods to detect CSCs and strategies for treatment and relapse, taking into account the requirement to inhibit CSC growth and survival within the complex backdrop of cellular processes, microenvironmental interactions, and regulatory networks associated with cancer. Finally, we critique the computationally reinforced triangle of factors inclusive of CSC properties, the process of autophagy, and lncRNA and their associated networks with respect to hypoxia, epithelial-to-mesenchymal transition (EMT), and signalling pathways.


Development ◽  
2022 ◽  
Author(s):  
Yuki Naitou ◽  
Go Nagamatsu ◽  
Nobuhiko Hamazaki ◽  
Kenjiro Shirane ◽  
Masafumi Hayashi ◽  
...  

In mammals, primordial germ cells (PGCs), the origin of the germ line, are specified from the epiblast at the posterior region where gastrulation simultaneously occurs, yet the functional relationship between PGC specification and gastrulation remains unclear. Here, we show that Ovol2, a transcription factor conserved across the animal kingdom, balances these major developmental processes by repressing the epithelial-to-mesenchymal transition (EMT) driving gastrulation and the upregulation of genes associated with PGC specification. Ovol2a, a splice variant encoding a repressor domain, directly regulates EMT-related genes and consequently induces re-acquisition of potential pluripotency during PGC specification, whereas Ovol2b, another splice variant missing the repressor domain, directly upregulates genes associated with PGC specification. Taken together, these results elucidate the molecular mechanism underlying allocation of the germ line among epiblast cells differentiating into somatic cells through gastrulation.


Sign in / Sign up

Export Citation Format

Share Document