scholarly journals Upregulation of miR-376c-3p alleviates oxygen–glucose deprivation-induced cell injury by targeting ING5

2019 ◽  
Vol 24 (1) ◽  
Author(s):  
Heng Zhang ◽  
Jie Zhou ◽  
Mingxia Zhang ◽  
Yanjie Yi ◽  
Bing He

Abstract Background The expression level of miR-376c-3p is significantly lower in infants with neonatal hypoxic-ischemic encephalopathy (HIE) than in healthy infants. However, the biological function of this microRNA remains largely elusive. Methods We used PC-12 and SH-SY5Y cells to establish an oxygen–glucose deprivation (OGD) cell injury model to mimic HIE in vitro. The miR-376c-3p expression levels were measured using quantitative reverse transcription PCR. The CCK-8 assay and flow cytometry were utilized to evaluate OGD-induced cell injury. The association between miR-376c-3p and inhibitor of growth 5 (ING5) was validated using the luciferase reporter assay. Western blotting was conducted to determine the protein expression of CDK4, cyclin D1, Bcl-2 and Bax. Results MiR-376c-3p was significantly downregulated in the OGD-induced cell injury model. Its overexpression elevated cell viability and impaired cell cycle G0/G1 phase arrest and apoptosis in PC-12 and SH-SY5Y cells after OGD. Downregulation of miR-376c-3p gave the opposite results. We further demonstrated that ING5 was a negatively regulated target gene of miR-376c-3p. Importantly, ING5 knockdown had a similar effect to miR-376c-3p-mediated protective effects against cell injury induced by OGD. Its overexpression abolished these protective effects. Conclusion Our data suggest that miR-376c-3p downregulated ING5 to exert protective effects against OGD-induced cell injury in PC-12 and SH-SY5Y cells. This might represent a novel therapeutic approach for neonatal HIE treatment.

Dose-Response ◽  
2020 ◽  
Vol 18 (2) ◽  
pp. 155932582091378
Author(s):  
Jun Leng ◽  
Wei Liu ◽  
Li Li ◽  
Fang Yue Wei ◽  
Meng Tian ◽  
...  

Objective: The objective of the present work was to study the role of Cxcl1 in cerebral ischemia–reperfusion (I/R) injury and to in-depth explore its pathogenesis. Methods: The expression of Cxcl1 based on the public data was analyzed. Then, we constructed an oxygen glucose deprivation/reoxygenation (OGD/R) model in vitro using mice brain microvascular endothelial cells (BMECs) to simulate cerebral I/R in vivo. Results: The results of quantitative real-time polymerase chain reaction assay uncovered that Cxcl1 showed higher expression while miR-429 showed lower expression in BMECs damaged by OGD/R, whereas overexpression of Cxcl1 or inhibition of miR-429 expression can strengthen this effect. Hereafter, through dual luciferase reporter assay, we verified that miR-429 directly targets Cxcl1 and negatively regulates Cxcl1 expression. Furthermore, the results also revealed that overexpression of Cxcl1 can reverse the miR-429-mediated effects. Conclusion: We concluded that miR-429 exerts protective effects against OGD/R-induce injury in vitro through modulation of Cxcl1 and nuclear factor kinase B pathway, hoping provide a new view on the pathogenesis of cerebral I/R injury and a feasible potential therapeutic target.


2017 ◽  
Vol 46 (2) ◽  
pp. 675-686 ◽  
Author(s):  
Ke Wang ◽  
Yuekun Zhu

Objective To investigate the protective effects of dexmedetomidine (DEX) in oxygen-glucose deprivation/reoxygenation (OGD/R) injury, which is involved in a number of ischaemic diseases. Methods An in vitro OGD/R injury model was generated using mouse Neuro 2A neuroblastoma (N2A) cells. Different concentrations of DEX were administrated to OGD/R cells. CV-65 was used to inhibit p38 microtubule associated protein kinase/extracellular signal-regulated kinases (MAPK/ERK) signalling. Cell proliferation, cell cycle, apoptosis, and the levels of proteins related to p38 MAPK/ERK signalling and apoptosis were evaluated using Cell Counting Kit-8, flow cytometry, TdT-UTP nick end labelling and Western blot analysis, respectively. Results DEX treatment of OGD/R cells promoted cell survival and attenuated OGD/R-induced cell apoptosis. It also activated the p38 MAPK/ERK signalling pathway, increased the levels of Bcl-2, and decreased the levels of Bax and cleaved caspase-3. Treatment with the p38 MAPK/ERK inhibitor CV-65 inhibited the activation of p38 MAPK/ERK and abrogated the DEX-induced effects on cell survival and apoptosis. Conclusions DEX protects N2A cells from OGD/R-induced apoptosis via the activation of the p38 MAPK/ERK signalling pathway. DEX might be an effective agent for the treatment of ischaemic diseases.


2015 ◽  
Vol 37 (4) ◽  
pp. 1369-1378 ◽  
Author(s):  
Tao Zhang ◽  
Feng Tian ◽  
Jing Wang ◽  
Jing Jing ◽  
Shan-Shan Zhou ◽  
...  

Background/Aims: Endothelial cell injury and subsequent death play an essential role in the pathogenesis of atherosclerosis. Autophagy of endothelial cells has a protective role against development of atherosclerosis, whereas the molecular regulation of endothelial cell autophagy is unclear. MicroRNA-30 (miR-30) is a known autophagy suppressor in some biological processes, while it is unknown whether this regulatory axis may be similarly involved in the development of atherosclerosis. Here, we aimed to answer these questions in the current study. Methods: We examined the levels of endothelial cell autophagy in ApoE (-/-) mice suppled with high-fat diet (HFD), a mouse model for atherosclerosis (simplified as HFD mice). We analyzed the levels of autophagy-associated protein 6 (ATG6, or Beclin-1) and the levels of miR-30 in the purified CD31+ endothelial cells from mouse aorta. Prediction of the binding between miR-30 and 3'-UTR of ATG6 mRNA was performed by bioinformatics analyses and confirmed by a dual luciferase reporter assay. The effects of miR-30 were further analyzed in an in vitro model using oxidized low-density lipoprotein (ox-LDL)-treated human aortic endothelial cells (HAECs). Results: HFD mice developed atherosclerosis in 12 weeks, while the control ApoE (-/-) mice that had received normal diet (simplified as NOR mice) did not. Compared to NOR mice, HFD mice had significantly lower levels of endothelial cell autophagy, resulting from decreases in ATG6 protein, but not mRNA. The decreases in ATG6 in endothelial cells were due to HFD-induced increases in miR-30, which suppressed the translation of ATG6 mRNA via 3′-UTR binding. These in vivo findings were reproduced in vitro on ox-LDL-treated HAECs. Conclusion: Upregulation of miR-30 by HFD may impair the protective effects of endothelial cell autophagy against development of atherosclerosis through suppressing protein translation of ATG6.


2021 ◽  
Author(s):  
Yulin Wang ◽  
Ying Jian ◽  
Xiaofu Zhang ◽  
Bin Ni ◽  
Mingwei Wang ◽  
...  

Abstract Melatonin has been shown to exert protective effect during myocardial ischemia/reperfusion (I/R). However, the underlying mechanism is not completely understood. Using the oxygen-glucose deprivation and reperfusion (OGD/R) model of H9c2 cells in vitro, we found that melatonin alleviated OGD/R-induced H9c2 cell injury via inhibiting Foxo3a/Bim signaling pathway. Inhibition of Rac1 activation contributed to the protective effect of melatonin against OGD/R injury in H9c2 cells. Additionally, melatonin inhibited OGD/R-activated Foxo3a/Bim signaling pathway through inactivation of Rac1. Furthermore, JNK inactivation was responsible for Rac1 inhibition-mediated inactivation of Foxo3a/Bim signaling pathway and decreased cell injury in melatonin-treated H9c2 cells. Taken together, these findings identified a Rac1/JNK/Foxo3a/Bim signaling pathway in melatonin-induced protective effect against OGD/R injury in H9c2 cells. This study provided a novel insight into the protective mechanism of melatonin against myocardial I/R injury.


2020 ◽  
pp. 1-11
Author(s):  
Song Yi ◽  
Chuqin Zhang ◽  
Na Li ◽  
Yajing Fu ◽  
Hongkun Li ◽  
...  

<b><i>Objective:</i></b> Recent reports have corroborated that micro­RNAs (miRs) are related to the pathological changes of cerebral ischemia-reperfusion (CIR) induced injury. This work aimed to unearth the role and potential mechanism of miR-325-3p in regulating neuronal survival in CIR injury. <b><i>Methods:</i></b> To conduct this investigation, we established an in vitro model of CIR injury by subjecting neurons to oxygen-glucose deprivation and reoxygenation (OGD/R). Gain and loss of function of miR-325-3p and receptor-interacting serine-threonine kinase 3 (RIP3) in neurons were performed to observe its effect on cell apoptosis and the release of lactate dehydrogenase. The levels of miR-325-3p and RIP3 in neurons were detected by qRT-PCR. Western blot was employed to inspect the levels of caspase3, Bax, and Bcl-2, as well as p38 and JNK phosphorylation. The relationship between miR-325-3p and RIP3 was detected by TargetScan and validated by dual-luciferase reporter assay. <b><i>Results:</i></b> Firstly, miR-325-3p expression was obviously downregulated while RIP3 expression was upregulated in neurons following OGD/R treatment. Overexpressed miR-325-3p or downexpressed RIP3 ameliorated OGD/R-induced neuronal injury. Besides, RIP3 was a direct target mRNA of miR-325-3p. Additionally, Western blot revealed the mitogen-activated protein kinase (MAPK) pathway was involved in the regulation of miR-325-3p on OGD/R-induced neuronal injury. Furthermore, miR-325-3p was verified to hinder OGD/R-induced neuronal injury through downregulating RIP3. <b><i>Conclusion:</i></b> This study demonstrated that miR-325-3p targets RIP3 to inactivate the MAPK pathway, thereby protecting neurons against OGD/R-induced injury.


2020 ◽  
Author(s):  
Liangyuan Suo ◽  
Mingyu Wang

Abstract Background Dexmedetomidine (DEX) is a selective agonist of α2-adrenergic receptors with anesthetic activity and neuroprotective benefits. However, its mechanism of action at the molecular level remains poorly defined. In this study, we investigated the protective effects of Dex on OGD/R-induced neuronal apoptosis in PC12 cells, and evaluated its underlying mechanism(s) of neuroprotection and anti-inflammation.Methods An OGD/R model of PC12 cells was established. PC12 cells were cultured in vitro and divided into control, OGD/R, and OGD/R + Dex (1, 10, 50 µM) groups. Cell apoptosis was analyzed by flow cytometry and gene expression profiles were determined by qRT-PCR, western blot analysis, and enzyme linked immunosorbent assays (ELISA). The interaction between miRNA and its downstream targets were evaluated through luciferase reporter assays.Results Dex significantly decreased the rates of apoptosis rates and inhibited IL-1β, IL-6 and TNF-α release (p < 0.05). The expression of the pro-apoptotic proteins Bax and Caspase-3 were down-regulated, whilst Bcl-2 was upregulated in a dose-dependent manner (p < 0.05). MiR-17-5p was down-regulated in the OGD/R group compared to controls. Toll-like receptor 4 (TLR4), a key regulator of nuclear factor kappa-B (NF-κB) signaling, was identified as a novel target of miR-17-5p in PC12 cells. The expression of miR-17-5p was upregulated in the OGD/R + Dex group which suppressed TLR4 expression and reduced the secretion of proinflammatory cytokines.Conclusion DEX inhibits OGD/R-induced inflammation and apoptosis in PC12 cells by increasing miR-17-5p expression, downregulating TLR4, and inhibiting NF-κB signaling.


2020 ◽  
Vol 17 (3) ◽  
pp. 259-266 ◽  
Author(s):  
Xuan Chen ◽  
Sumei Zhang ◽  
Peipei Shi ◽  
Yangli Su ◽  
Dong Zhang ◽  
...  

Objective: Ischemia-reperfusion (I/R) injury is a pathological feature of ischemic stroke. This study investigated the regulatory role of miR-485-5p in I/R injury. Methods: SH-SY5Y cells were induced with oxygen and glucose deprivation/reoxygenation (OGD/R) to mimic I/R injury in vitro. Cells were transfected with designated constructs (miR-485- 5p mimics, miR-485-5p inhibitor, lentiviral vectors overexpressing Rac1 or their corresponding controls). Cell viability was evaluated using the MTT assay. The concentrations of lactate dehydrogenase, malondialdehyde, and reactive oxygen species were detected to indicate the degree of oxidative stress. Flow cytometry and caspase-3 activity assay were used for apoptosis assessment. Dual-luciferase reporter assay was performed to confirm that Rac family small GTPase 1 (Rac1) was a downstream gene of miR-485-5p. Results: OGD/R resulted in decreased cell viability, elevated oxidative stress, increased apoptosis, and downregulated miR-485-5p expression in SH-SY5Y cells. MiR-485-5p upregulation alleviated I/R injury, evidenced by improved cell viability, decreased oxidative markers, and reduced apoptotic rate. OGD/R increased the levels of Rac1 and neurogenic locus notch homolog protein 2 (Notch2) signaling-related proteins in cells with normal miR-485-5p expression, whereas miR- 485-5p overexpression successfully suppressed OGD/R-induced upregulation of these proteins. Furthermore, the delivery of vectors overexpressing Rac1 in miR-485-5p mimics-transfected cells reversed the protective effect of miR-485-5p in cells with OGD/R-induced injury. Conclusion: This study showed that miR-485-5p protected cells following I/R injury via targeting Rac1/Notch2 signaling suggest that targeted upregulation of miR-485-5p might be a promising therapeutic option for the protection against I/R injury.


2021 ◽  
Vol 16 (2) ◽  
pp. 1934578X2199226
Author(s):  
Zhi-You Hao ◽  
Gang Ni ◽  
Dong Liang ◽  
Yan-Fei Liu ◽  
Chun-Lei Zhang ◽  
...  

A new brominated norsesquiterpene glycoside, acoruside (1), has been isolated from the rhizomes of Acorus tatarinowii Schott, together with 8 known compounds (2-9). Their structures were elucidated mainly based on 1-dimensional (1D) and 2D nuclear magnetic resonance spectra. The absolute configuration of compound 1 was determined by comparing its experimental and calculated electronic circular dichroism spectra. The in vitro tests indicated that at 10 µM, compounds 2, 3, and 4 aggravated serum deprivation injuries of PC12 cells, compound 2 aggravated rotenone-induced injuries of PC12 cells, and compounds 3 and 4 aggravated the oxygen-glucose deprivation-induced injuries of PC12 cells.


Sign in / Sign up

Export Citation Format

Share Document