scholarly journals Genetic architecture and major genes for backfat thickness in pig lines of diverse genetic backgrounds

2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Miguel Gozalo-Marcilla ◽  
Jaap Buntjer ◽  
Martin Johnsson ◽  
Lorena Batista ◽  
Federico Diez ◽  
...  

Abstract Background Backfat thickness is an important carcass composition trait for pork production and is commonly included in swine breeding programmes. In this paper, we report the results of a large genome-wide association study for backfat thickness using data from eight lines of diverse genetic backgrounds. Methods Data comprised 275,590 pigs from eight lines with diverse genetic backgrounds (breeds included Large White, Landrace, Pietrain, Hampshire, Duroc, and synthetic lines) genotyped and imputed for 71,324 single-nucleotide polymorphisms (SNPs). For each line, we estimated SNP associations using a univariate linear mixed model that accounted for genomic relationships. SNPs with significant associations were identified using a threshold of p < 10–6 and used to define genomic regions of interest. The proportion of genetic variance explained by a genomic region was estimated using a ridge regression model. Results We found significant associations with backfat thickness for 264 SNPs across 27 genomic regions. Six genomic regions were detected in three or more lines. The average estimate of the SNP-based heritability was 0.48, with estimates by line ranging from 0.30 to 0.58. The genomic regions jointly explained from 3.2 to 19.5% of the additive genetic variance of backfat thickness within a line. Individual genomic regions explained up to 8.0% of the additive genetic variance of backfat thickness within a line. Some of these 27 genomic regions also explained up to 1.6% of the additive genetic variance in lines for which the genomic region was not statistically significant. We identified 64 candidate genes with annotated functions that can be related to fat metabolism, including well-studied genes such as MC4R, IGF2, and LEPR, and more novel candidate genes such as DHCR7, FGF23, MEDAG, DGKI, and PTN. Conclusions Our results confirm the polygenic architecture of backfat thickness and the role of genes involved in energy homeostasis, adipogenesis, fatty acid metabolism, and insulin signalling pathways for fat deposition in pigs. The results also suggest that several less well-understood metabolic pathways contribute to backfat development, such as those of phosphate, calcium, and vitamin D homeostasis.

2020 ◽  
Vol 33 (10) ◽  
pp. 1558-1565
Author(s):  
Mi Na Park ◽  
Dongwon Seo ◽  
Ki-Yong Chung ◽  
Soo-Hyun Lee ◽  
Yoon-Ji Chung ◽  
...  

Objective: The objective of this study was to characterize the number of loci affecting growth traits and the distribution of single nucleotide polymorphism (SNP) effects on growth traits, and to understand the genetic architecture for growth traits in Hanwoo (Korean cattle) using genome-wide association study (GWAS), genomic partitioning, and hierarchical Bayesian mixture models.Methods: GWAS: A single-marker regression-based mixed model was used to test the association between SNPs and causal variants. A genotype relationship matrix was fitted as a random effect in this linear mixed model to correct the genetic structure of a sire family. Genomic restricted maximum likelihood and BayesR: A priori information included setting the fixed additive genetic variance to a pre-specified value; the first mixture component was set to zero, the second to 0.0001×σ_g^2, the third 0.001 × σ_g^2, d the fourth to 0.01 × σ_g^2. BayesR fixed a priori information was not more than 1% of the genetic variance for each of the SNPs affecting the mixed distribution.Results: The GWAS revealed common genomic regions of 2 Mb on bovine chromosome 14 (BTA14) and 3 had a moderate effect that may contain causal variants for body weight at 6, 12, 18, and 24 months. This genomic region explained approximately 10% of the variance against total additive genetic variance and body weight heritability at 12, 18, and 24 months. BayesR identified the exact genomic region containing causal SNPs on BTA14, 3, and 22. However, the genetic variance explained by each chromosome or SNP was estimated to be very small compared to the total additive genetic variance. Causal SNPs for growth trait on BTA14 explained only 0.04% to 0.5% of the genetic varianceConclusion: Segregating mutations have a moderate effect on BTA14, 3, and 19; many other loci with small effects on growth traits at different ages were also identified.


Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 12
Author(s):  
Houssemeddine Srihi ◽  
José Luis Noguera ◽  
Victoria Topayan ◽  
Melani Martín de Hijas ◽  
Noelia Ibañez-Escriche ◽  
...  

INGA FOOD S. A., as a Spanish company that produces and commercializes fattened pigs, has produced a hybrid Iberian sow called CASTÚA by crossing the Retinto and Entrepelado varieties. The selection of the parental populations is based on selection criteria calculated from purebred information, under the assumption that the genetic correlation between purebred and crossbred performance is high; however, these correlations can be less than one because of a GxE interaction or the presence of non-additive genetic effects. This study estimated the additive and dominance variances of the purebred and crossbred populations for litter size, and calculated the additive genetic correlations between the purebred and crossbred performances. The dataset consisted of 2030 litters from the Entrepelado population, 1977 litters from the Retinto population, and 1958 litters from the crossbred population. The individuals were genotyped with a GeneSeek® GGP Porcine70K HDchip. The model of analysis was a ‘biological’ multivariate mixed model that included additive and dominance SNP effects. The estimates of the additive genotypic variance for the total number born (TNB) were 0.248, 0.282 and 0.546 for the Entrepelado, Retinto and Crossbred populations, respectively. The estimates of the dominance genotypic variances were 0.177, 0.172 and 0.262 for the Entrepelado, Retinto and Crossbred populations. The results for the number born alive (NBA) were similar. The genetic correlations between the purebred and crossbred performance for TNB and NBA—between the brackets—were 0.663 in the Entrepelado and 0.881 in Retinto poplulations. After backsolving to obtain estimates of the SNP effects, the additive genetic variance associated with genomic regions containing 30 SNPs was estimated, and we identified four genomic regions that each explained > 2% of the additive genetic variance in chromosomes (SSC) 6, 8 and 12: one region in SSC6, two regions in SSC8, and one region in SSC12.


2015 ◽  
Vol 45 (6) ◽  
pp. 689-697 ◽  
Author(s):  
John H. Russell ◽  
João Costa e Silva ◽  
Brian S. Baltunis

Clonally replicated Callitropsis nootkatensis (D. Don) D.P. Little progeny from partial diallels were established in nine trials on coastal British Columbia, Canada. The trials were assessed for height, diameter, and crown form at age 12 years. An individual-genotype, linear mixed model with spatially correlated residuals was used to estimate the variance components and related genetic parameters. The majority of the estimated genetic variance for all traits was additive, and nonadditive genetic variance was predominantly due to dominance effects. Narrow-sense heritabilities for height and diameter at individual sites varied from 0.07 to 0.39, whereas for crown form, they were all less than 0.1. Dominance and epistasis ratios were, for the most part, lower than narrow-sense heritabilities. Common across-site additive and nonadditive genetic correlations were strongly positive and not significantly different from 1.0 for the majority of traits across sites within a series. Significant levels of additive genetic variance, coupled with insignificant to low nonadditive genetic variance for growth and crown form, would seem to be contrary to developing a clonal testing and deployment program. However, the lack of viable orchard seed and the faster delivery of genetic gain to reforestation, as well as more accurate forward selections based on additive genetic effects, makes this strategy viable for C. nootkatensis.


Animals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 500
Author(s):  
Hadi Atashi ◽  
Mazdak Salavati ◽  
Jenne De Koster ◽  
Mark Crowe ◽  
Geert Opsomer ◽  
...  

The aim of the present study was to identify genomic region(s) associated with the length of the calving interval in primiparous (n = 6866) and multiparous (n = 5071) Holstein cows. The single nucleotide polymorphism (SNP) solutions were estimated using a weighted single-step genomic best linear unbiased prediction (WssGBLUP) approach and imputed high-density panel (777 k) genotypes. The effects of markers and the genomic estimated breeding values (GEBV) of the animals were obtained by five iterations of WssGBLUP. The results showed that the accuracies of GEBVs with WssGBLUP improved by +5.4 to +5.7, (primiparous cows) and +9.4 to +9.7 (multiparous cows) percent points over accuracies from the pedigree-based BLUP. The most accurate genomic evaluation was provided at the second iteration of WssGBLUP, which was used to identify associated genomic regions using a windows-based GWAS procedure. The proportion of additive genetic variance explained by windows of 50 consecutive SNPs (with an average of 165 Kb) was calculated and the region(s) that accounted for equal to or more than 0.20% of the total additive genetic variance were used to search for candidate genes. Three windows of 50 consecutive SNPs (BTA3, BTA6, and BTA7) were identified to be associated with the length of the calving interval in primi- and multiparous cows, while the window with the highest percentage of explained genetic variance was located on BTA3 position 49.42 to 49.52 Mb. There were five genes including ARHGAP29, SEC24D, METTL14, SLC36A2, and SLC36A3 inside the windows associated with the length of the calving interval. The biological process terms including alanine transport, L-alanine transport, proline transport, and glycine transport were identified as the most important terms enriched by the genes inside the identified windows.


2006 ◽  
Vol 18 (2) ◽  
pp. 239
Author(s):  
J. Piedrahita ◽  
S. Bischoff ◽  
J. Estrada ◽  
B. Freking ◽  
D. Nonneman ◽  
...  

Genomic imprinting arises from differential epigenetic markings including DNA methylation and histone modifications and results in one allele being expressed in a parent-of-origin specific manner. For further insight into the porcine epigenome, gene expression profiles of parthenogenetic (PRT; two maternally derived chromosome sets) and biparental embryos (BP; one maternal and one paternal set of chromosomes) were compared using microarrays. Comparison of the expression profiles of the two tissue types permits identification of both maternally and paternally imprinted genes and thus the degree of conservation of imprinted genes between swine and other mammalian species. Diploid porcine parthenogenetic fetuses were generated using follicular oocytes (BOMED, Madison, WI, USA). Oocytes with a visible polar body were activated using a single square pulse of direct current of 50 V/mm for 100 �s and diploidized by culture in 10 �g/mL cycloheximide for 6 h to limit extrusion of the second polar body. Following culture, BP embryos obtained by natural matings, and PRT embryos, were surgically transferred to oviducts on the first day of estrus. Fetuses recovered at 28-30 days of gestation were dissected to separate viscera including brain, liver, and placenta; the visceral tissues were then flash-frozen in liquid nitrogen. Porcine fibroblast tissue was obtained from the remaining carcass by mincing, trypsinization, and plating cells in �-MEM. Total RNA was extracted from frozen tissue or cell culture using RNA Aqueous kit (Ambion, Austin, TX, USA) according to the manufacturer's protocol. Gene expression differences between BP and PRT tissues were determined using the GeneChip� Porcine Genome Array (Affymetrix, Santa Clara, CA) containing 23 256 transcripts from Sus scrofa and representing 42 genes known to be imprinted in human and/or mice. Triplicate arrays were utilized for each tissue type, and for PRT versus BP combination. Significant differential gene expression was identified by a linear mixed model analysis using SAS 5.0 (SAS Institute, Cary, NC, USA). Storey's q-value method was used to correct for multiple testing at q d 0.05. The following genes were classified as imprinted on the basis of their expression profiles: In fibroblasts, ARHI, HTR2A, MEST, NDN, NNAT, PEG3, PLAGL1, PEG10, SGCE, SNRPN, and UBE3A; in liver, IGF2, PEG3, PLAGL1, PEG10, and SNRPN; in placenta, HTR2A, IGF2, MEST, NDN, NNAT, PEG3, PLAGL1, PEG10, and SNRPN; and in brain, none. Additionally, several genes not known to be imprinted in humans/mice were highly differentially expressed between the two tissue types. Overall, utilizing the PRT models and gene expression profiles, we have identified thirteen genes where imprinting is conserved between swine and humans/mice, and several candidate genes that represent potentially imprinted genes. Presently, our efforts are focused in the identification of single nucleotide polymorphisms (SNPs) to more carefully evaluate the behavior of these genes in normal and abnormal gestations and to test whether the candidate genes are indeed imprinted. This research was supported by USDA-CSREES grant 524383 to J. P. and B. F.


2021 ◽  
Author(s):  
Mahmoud A Elattar ◽  
Benjamin Karikari ◽  
Shuguang Li ◽  
Shiyu Song ◽  
Yongce Cao ◽  
...  

Abstract Dissecting the genetic mechanism underlying seed size, shape and weight is essential to these traits for enhancing soybean cultivars. High-density genetic maps of two recombinant inbred line populations, LM6 and ZM6, evaluated in multiple environments to identify candidate genes behind seed-related traits major and stable QTLs. A total of 239 and 43 M-QTL were mapped by composite interval mapping and mixed-model based composite interval mapping approaches, respectively, from which 22 common QTLs including four major and novel QTLs. CIM and MCIM approaches identified 180 and 18 novel M-QTLs, respectively. Moreover, 18 QTLs showed significant AE effects, and 40 pairwise of the identified QTLs exhibited digenic epistatic effects. Seed flatness index QTLs (34 QTLs) were identified and reported for the first time. Seven QTL clusters underlying the inheritance of seed size, shape and weight on genomic regions of chromosomes 3, 4, 5, 7, 9, 17 and 19 were identified. Gene annotations, gene ontology (GO) enrichment and RNA-seq analyses identified 47 candidate genes for seed-related traits within the genomic regions of those 7 QTL clusters. These genes are highly expressed in seed-related tissues and nodules, that might be deemed as potential candidate genes regulating the above traits in soybean. This study provides detailed information for the genetic bases of the studied traits and candidate genes that could be efficiently implemented by soybean breeders for fine mapping and gene cloning as well as for MAS targeted at improving these traits individually or concurrently.


2014 ◽  
Author(s):  
Jennifer Lachowiec ◽  
Xia Shen ◽  
Christine Queitsch ◽  
Örjan Carlborg

Efforts to identify loci underlying complex traits generally assume that most genetic variance is additive. Here, we examined the genetics of Arabidopsis thaliana root length and found that the narrow-sense heritability for this trait was statistically zero. This low additive genetic variance likely explains why no associations to root length could be found using standard additive-model-based genome-wide association (GWA) approaches. However, the broad-sense heritability for root length was significantly larger, and we therefore also performed an epistatic GWA analysis to map loci contributing to the epistatic genetic variance. This analysis revealed four interacting pairs involving seven chromosomal loci that passed a standard multiple-testing corrected significance threshold. Explorations of the genotype-phenotype maps for these pairs revealed that the detected epistasis cancelled out the additive genetic variance, explaining why these loci were not detected in the additive GWA analysis. Small population sizes, such as in our experiment, increase the risk of identifying false epistatic interactions due to testing for associations with very large numbers of multi-marker genotypes in few phenotyped individuals. Therefore, we estimated the false-positive risk using a new statistical approach that suggested half of the associated pairs to be true positive associations. Our experimental evaluation of candidate genes within the seven associated loci suggests that this estimate is conservative; we identified functional candidate genes that affected root development in four loci that were part of three of the pairs. In summary, statistical epistatic analyses were found to be indispensable for confirming known, and identifying several new, functional candidate genes for root length using a population of wild-collected A. thaliana accessions. We also illustrated how epistatic cancellation of the additive genetic variance resulted in an insignificant narrow-sense, but significant broad-sense heritability that could be dissected into the contributions of several individual loci using a combination of careful statistical epistatic analyses and functional genetic experiments.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Susana Trindade Leitão ◽  
Maria Catarina Bicho ◽  
Priscila Pereira ◽  
Maria João Paulo ◽  
Marcos Malosetti ◽  
...  

AbstractWater deficit is a major worldwide constraint to common bean (Phaseolus vulgaris L.) production, being photosynthesis one of the most affected physiological processes. To gain insights into the genetic basis of the photosynthetic response of common bean under water-limited conditions, a collection of 158 Portuguese accessions was grown under both well-watered and water-deficit regimes. Leaf gas-exchange parameters were measured and photosynthetic pigments quantified. The same collection was genotyped using SNP arrays, and SNP-trait associations tested considering a linear mixed model accounting for the genetic relatedness among accessions. A total of 133 SNP-trait associations were identified for net CO2 assimilation rate, transpiration rate, stomatal conductance, and chlorophylls a and b, carotenes, and xanthophyll contents. Ninety of these associations were detected under water-deficit and 43 under well-watered conditions, with only two associations common to both treatments. Identified candidate genes revealed that stomatal regulation, protein translocation across membranes, redox mechanisms, hormone, and osmotic stress signaling were the most relevant processes involved in common bean response to water-limited conditions. These candidates are now preferential targets for common bean water-deficit-tolerance breeding. Additionally, new sources of water-deficit tolerance of Andean, Mesoamerican, and admixed origin were detected as accessions valuable for breeding, and not yet explored.


Sign in / Sign up

Export Citation Format

Share Document