scholarly journals RNAdetector: a free user-friendly stand-alone and cloud-based system for RNA-Seq data analysis

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Alessandro La Ferlita ◽  
Salvatore Alaimo ◽  
Sebastiano Di Bella ◽  
Emanuele Martorana ◽  
Georgios I. Laliotis ◽  
...  

Abstract Background RNA-Seq is a well-established technology extensively used for transcriptome profiling, allowing the analysis of coding and non-coding RNA molecules. However, this technology produces a vast amount of data requiring sophisticated computational approaches for their analysis than other traditional technologies such as Real-Time PCR or microarrays, strongly discouraging non-expert users. For this reason, dozens of pipelines have been deployed for the analysis of RNA-Seq data. Although interesting, these present several limitations and their usage require a technical background, which may be uncommon in small research laboratories. Therefore, the application of these technologies in such contexts is still limited and causes a clear bottleneck in knowledge advancement. Results Motivated by these considerations, we have developed RNAdetector, a new free cross-platform and user-friendly RNA-Seq data analysis software that can be used locally or in cloud environments through an easy-to-use Graphical User Interface allowing the analysis of coding and non-coding RNAs from RNA-Seq datasets of any sequenced biological species. Conclusions RNAdetector is a new software that fills an essential gap between the needs of biomedical and research labs to process RNA-Seq data and their common lack of technical background in performing such analysis, which usually relies on outsourcing such steps to third party bioinformatics facilities or using expensive commercial software.

2021 ◽  
Vol 22 (5) ◽  
pp. 2683
Author(s):  
Princess D. Rodriguez ◽  
Hana Paculova ◽  
Sophie Kogut ◽  
Jessica Heath ◽  
Hilde Schjerven ◽  
...  

Non-coding RNAs (ncRNAs) comprise a diverse class of non-protein coding transcripts that regulate critical cellular processes associated with cancer. Advances in RNA-sequencing (RNA-Seq) have led to the characterization of non-coding RNA expression across different types of human cancers. Through comprehensive RNA-Seq profiling, a growing number of studies demonstrate that ncRNAs, including long non-coding RNA (lncRNAs) and microRNAs (miRNA), play central roles in progenitor B-cell acute lymphoblastic leukemia (B-ALL) pathogenesis. Furthermore, due to their central roles in cellular homeostasis and their potential as biomarkers, the study of ncRNAs continues to provide new insight into the molecular mechanisms of B-ALL. This article reviews the ncRNA signatures reported for all B-ALL subtypes, focusing on technological developments in transcriptome profiling and recently discovered examples of ncRNAs with biologic and therapeutic relevance in B-ALL.


2020 ◽  
Vol 21 (10) ◽  
pp. 3711
Author(s):  
Melina J. Sedano ◽  
Alana L. Harrison ◽  
Mina Zilaie ◽  
Chandrima Das ◽  
Ramesh Choudhari ◽  
...  

Genome-wide RNA sequencing has shown that only a small fraction of the human genome is transcribed into protein-coding mRNAs. While once thought to be “junk” DNA, recent findings indicate that the rest of the genome encodes many types of non-coding RNA molecules with a myriad of functions still being determined. Among the non-coding RNAs, long non-coding RNAs (lncRNA) and enhancer RNAs (eRNA) are found to be most copious. While their exact biological functions and mechanisms of action are currently unknown, technologies such as next-generation RNA sequencing (RNA-seq) and global nuclear run-on sequencing (GRO-seq) have begun deciphering their expression patterns and biological significance. In addition to their identification, it has been shown that the expression of long non-coding RNAs and enhancer RNAs can vary due to spatial, temporal, developmental, or hormonal variations. In this review, we explore newly reported information on estrogen-regulated eRNAs and lncRNAs and their associated biological functions to help outline their markedly prominent roles in estrogen-dependent signaling.


2017 ◽  
Vol 25 (1) ◽  
pp. 4-12 ◽  
Author(s):  
Reem Almugbel ◽  
Ling-Hong Hung ◽  
Jiaming Hu ◽  
Abeer Almutairy ◽  
Nicole Ortogero ◽  
...  

Abstract Objective Bioinformatics publications typically include complex software workflows that are difficult to describe in a manuscript. We describe and demonstrate the use of interactive software notebooks to document and distribute bioinformatics research. We provide a user-friendly tool, BiocImageBuilder, that allows users to easily distribute their bioinformatics protocols through interactive notebooks uploaded to either a GitHub repository or a private server. Materials and methods We present four different interactive Jupyter notebooks using R and Bioconductor workflows to infer differential gene expression, analyze cross-platform datasets, process RNA-seq data and KinomeScan data. These interactive notebooks are available on GitHub. The analytical results can be viewed in a browser. Most importantly, the software contents can be executed and modified. This is accomplished using Binder, which runs the notebook inside software containers, thus avoiding the need to install any software and ensuring reproducibility. All the notebooks were produced using custom files generated by BiocImageBuilder. Results BiocImageBuilder facilitates the publication of workflows with a point-and-click user interface. We demonstrate that interactive notebooks can be used to disseminate a wide range of bioinformatics analyses. The use of software containers to mirror the original software environment ensures reproducibility of results. Parameters and code can be dynamically modified, allowing for robust verification of published results and encouraging rapid adoption of new methods. Conclusion Given the increasing complexity of bioinformatics workflows, we anticipate that these interactive software notebooks will become as necessary for documenting software methods as traditional laboratory notebooks have been for documenting bench protocols, and as ubiquitous.


2017 ◽  
Author(s):  
Sinan Uğur Umu ◽  
Hilde Langseth ◽  
Cecilie Bucher-Jonannessen ◽  
Bastian Fromm ◽  
Andreas Keller ◽  
...  

ABSTRACTNon-coding RNA (ncRNA) molecules have fundamental roles in cells and many are also stable in body fluids as extracellular RNAs. In this study, we used RNA sequencing (RNA-seq) to investigate the profile of small non-coding RNA (sncRNA) in human serum. We analyzed 10 billion lllumina reads from 477 serum samples, included in the Norwegian population-based Janus Serum Bank (JSB). We found that the core serum RNA repertoire includes 258 micro RNAs (miRNA), 441 piwi-interacting RNAs (piRNA), 411 transfer RNAs (tRNA), 24 small nucleolar RNAs (snoRNA), 125 small nuclear RNAs (snRNA) and 123 miscellaneous RNAs (misc-RNA). We also investigated biological and technical variation in expression, and the results suggest that many RNA molecules identified in serum contain signs of biological variation. They are therefore unlikely to be random degradation by-products. In addition, the presence of specific fragments of tRNA, snoRNA, Vault RNA and Y_RNA indicates protection from degradation. Our results suggest that many circulating RNAs in serum can be potential biomarkers.


2020 ◽  
Author(s):  
Daniel Dimitrov ◽  
Quan Gu

AbstractRNA sequencing is a high-throughput sequencing technique considered as an indispensable research tool used in a broad range of transcriptome analysis studies. The most common application of RNA Sequencing is Differential Expression analysis and it is used to determine genetic loci with distinct expression across different conditions. On the other hand, an emerging field called single-cell RNA sequencing is used for transcriptome profiling at the individual cell level. The standard protocols for both these types of analyses include the processing of sequencing libraries and result in the generation of count matrices. An obstacle to these analyses and the acquisition of meaningful results is that both require programming expertise.BingleSeq was developed as an intuitive application that provides a user-friendly solution for the analysis of count matrices produced by both Bulk and Single-cell RNA-Seq experiments. This was achieved by building an interactive dashboard-like user interface and incorporating three state-of-the-art software packages for each type of the aforementioned analyses, alongside additional features such as key visualisation techniques, functional gene annotation analysis and rank-based consensus for differential gene analysis results, among others. As a result, BingleSeq puts the best and most widely used packages and tools for RNA-Seq analyses at the fingertips of biologists with no programming experience.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Shanrong Zhao ◽  
Kurt Prenger ◽  
Lance Smith

RNA-Seq is becoming a promising replacement to microarrays in transcriptome profiling and differential gene expression study. Technical improvements have decreased sequencing costs and, as a result, the size and number of RNA-Seq datasets have increased rapidly. However, the increasing volume of data from large-scale RNA-Seq studies poses a practical challenge for data analysis in a local environment. To meet this challenge, we developed Stormbow, a cloud-based software package, to process large volumes of RNA-Seq data in parallel. The performance of Stormbow has been tested by practically applying it to analyse 178 RNA-Seq samples in the cloud. In our test, it took 6 to 8 hours to process an RNA-Seq sample with 100 million reads, and the average cost was $3.50 per sample. Utilizing Amazon Web Services as the infrastructure for Stormbow allows us to easily scale up to handle large datasets with on-demand computational resources. Stormbow is a scalable, cost effective, and open-source based tool for large-scale RNA-Seq data analysis. Stormbow can be freely downloaded and can be used out of box to process Illumina RNA-Seq datasets.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10469
Author(s):  
Daniel Dimitrov ◽  
Quan Gu

Background RNA sequencing is an indispensable research tool used in a broad range of transcriptome analysis studies. The most common application of RNA Sequencing is differential expression analysis and it is used to determine genetic loci with distinct expression across different conditions. An emerging field called single-cell RNA sequencing is used for transcriptome profiling at the individual cell level. The standard protocols for both of these approaches include the processing of sequencing libraries and result in the generation of count matrices. An obstacle to these analyses and the acquisition of meaningful results is that they require programing expertise. Although some effort has been directed toward the development of user-friendly RNA-Seq analysis analysis tools, few have the flexibility to explore both Bulk and single-cell RNA sequencing. Implementation BingleSeq was developed as an intuitive application that provides a user-friendly solution for the analysis of count matrices produced by both Bulk and Single-cell RNA-Seq experiments. This was achieved by building an interactive dashboard-like user interface which incorporates three state-of-the-art software packages for each type of the aforementioned analyses. Furthermore, BingleSeq includes additional features such as visualization techniques, extensive functional annotation analysis and rank-based consensus for differential gene analysis results. As a result, BingleSeq puts some of the best reviewed and most widely used packages and tools for RNA-Seq analyses at the fingertips of biologists with no programing experience. Availability BingleSeq is as an easy-to-install R package available on GitHub at https://github.com/dbdimitrov/BingleSeq/.


2021 ◽  
Author(s):  
Yuejiao Li ◽  
Tao Yang ◽  
Tingting Lai ◽  
Lijin You ◽  
Fan Yang ◽  
...  

Advances in single-cell sequencing technology provide a unique approach to characterize the heterogeneity and distinctive functional states at single-cell resolution, leading to rapid accumulation of large-scale single-cell datasets. A big challenge undertaken by research community especially bench scientists is how to simplify the way of retrieving, processing and analyzing the huge number of datasets. Towards this end, we developed Cell-omics Data Coordinate Platform (CDCP),a platform that aims to share and integrate comprehensive single-cell datasets, and to provide a network analysis toolkit for personalized analysis. CDCP contains single-cell RNA-seq and ATAC-seq datasets of 474,572 cells from 6,459 samples in species covering humans, non-human primate models and other animals. It allows querying and visualization of interested datasets and the expression profile of distinct genes in different cell clusters and cell types. Besides, this platform provides an analysis pipeline for non-bioinformatician experimental scientists to address questions not focused by the submitters of the datasets. In summary, CDCP provides a user-friendly interface for researchers to explore, visualize, analyze, download and submit published single-cell datasets and it will be a valuable resource for investigators to explore the global transcriptome profiling at single-cell level.


2019 ◽  
Author(s):  
Camille Sessegolo ◽  
Corinne Cruaud ◽  
Corinne Da Silva ◽  
Audric Cologne ◽  
Marion Dubarry ◽  
...  

AbstractOur vision of DNA transcription and splicing has changed dramatically with the introduction of short-read sequencing. These high-throughput sequencing technologies promised to unravel the complexity of any transcriptome. Generally gene expression levels are well-captured using these technologies, but there are still remaining caveats due to the limited read length and the fact that RNA molecules had to be reverse transcribed before sequencing. Oxford Nanopore Technologies has recently launched a portable sequencer which offers the possibility of sequencing long reads and most importantly RNA molecules. Here we generated a full mouse transcriptome from brain and liver using the Oxford Nanopore device. As a comparison, we sequenced RNA (RNA-Seq) and cDNA (cDNA-Seq) molecules using both long and short reads technologies and tested the TeloPrime preparation kit, dedicated to the enrichment of full-length transcripts. Using spike-in data, we confirmed that expression levels are efficiently captured by cDNA-Seq using short reads. More importantly, Oxford Nanopore RNA-Seq tends to be more efficient, while cDNA-Seq appears to be more biased. We further show that the cDNA library preparation of the Nanopore protocol induces read truncation for transcripts containing internal runs of T’s. This bias is marked for runs of at least 15 T’s, but is already detectable for runs of at least 9 T’s and therefore concerns more than 20% of expressed transcripts in mouse brain and liver. Finally, we outline that bioinformatics challenges remain ahead for quantifying at the transcript level, especially when reads are not full-length. Accurate quantification of repeat-associated genes such as processed pseudogenes also remains difficult, and we show that current mapping protocols which map reads to the genome largely over-estimate their expression, at the expense of their parent gene. The entire dataset is available from http://www.genoscope.cns.fr/externe/ONT_mouse_RNA.


Sign in / Sign up

Export Citation Format

Share Document