scholarly journals Temporal changes in DNA methylation and RNA expression in a small song bird: within- and between-tissue comparisons

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Melanie Lindner ◽  
Irene Verhagen ◽  
Heidi M. Viitaniemi ◽  
Veronika N. Laine ◽  
Marcel E. Visser ◽  
...  

Abstract Background DNA methylation is likely a key mechanism regulating changes in gene transcription in traits that show temporal fluctuations in response to environmental conditions. To understand the transcriptional role of DNA methylation we need simultaneous within-individual assessment of methylation changes and gene expression changes over time. Within-individual repeated sampling of tissues, which are essential for trait expression is, however, unfeasible (e.g. specific brain regions, liver and ovary for reproductive timing). Here, we explore to what extend between-individual changes in DNA methylation in a tissue accessible for repeated sampling (red blood cells (RBCs)) reflect such patterns in a tissue unavailable for repeated sampling (liver) and how these DNA methylation patterns are associated with gene expression in such inaccessible tissues (hypothalamus, ovary and liver). For this, 18 great tit (Parus major) females were sacrificed at three time points (n = 6 per time point) throughout the pre-laying and egg-laying period and their blood, hypothalamus, ovary and liver were sampled. Results We simultaneously assessed DNA methylation changes (via reduced representation bisulfite sequencing) and changes in gene expression (via RNA-seq and qPCR) over time. In general, we found a positive correlation between changes in CpG site methylation in RBCs and liver across timepoints. For CpG sites in close proximity to the transcription start site, an increase in RBC methylation over time was associated with a decrease in the expression of the associated gene in the ovary. In contrast, no such association with gene expression was found for CpG site methylation within the gene body or the 10 kb up- and downstream regions adjacent to the gene body. Conclusion Temporal changes in DNA methylation are largely tissue-general, indicating that changes in RBC methylation can reflect changes in DNA methylation in other, often less accessible, tissues such as the liver in our case. However, associations between temporal changes in DNA methylation with changes in gene expression are mostly tissue- and genomic location-dependent. The observation that temporal changes in DNA methylation within RBCs can relate to changes in gene expression in less accessible tissues is important for a better understanding of how environmental conditions shape traits that temporally change in expression in wild populations.

2019 ◽  
Vol 18 ◽  
pp. 117693511982877 ◽  
Author(s):  
John CG Spainhour ◽  
Hong Seo Lim ◽  
Soojin V Yi ◽  
Peng Qiu

Background: DNA methylation is a form of epigenetic modification that has been shown to play a significant role in gene regulation. In cancer, DNA methylation plays an important role by regulating the expression of oncogenes. The role of DNA methylation in the onset and progression of various cancer types is now being elucidated as more large-scale data become available. The Cancer Genome Atlas (TCGA) provides a wealth of information for the analysis of various molecular aspects of cancer genetics. Gene expression data and DNA methylation data from TCGA have been used for a variety of studies. A traditional understanding of the effects of DNA methylation on gene expression has linked methylation of CpG sites in the gene promoter region with the decrease in gene expression. Recent studies have begun to expand this traditional role of DNA methylation. Results: Here we present a pan-cancer analysis of correlation patterns between CpG methylation and gene expression. Using matching patient data from TCGA, 33 cancer-specific correlations were calculated for each CpG site and the expression level of its corresponding gene. These correlations were used to identify patterns on a per-site basis as well as patterns of methylation across the gene body. Using these identified patterns, we found genes that contain conflicting methylation signals beyond the commonly accepted association between the promoter region methylation and silencing of gene expression. Beyond gene body methylation in whole, we examined individual CpG sites and show that, even in the same gene body, some sites can have a contradictory effect on gene expression in cancers. Conclusions: We observed that within promoter regions there was a substantial amount of positive correlation between methylation and gene expression, which contradicts the commonly accepted association. We observed that the correlation between CpG methylation and gene expression does not exhibit in a tissue-specific manner, suggesting that the effects of methylation on gene expression are largely tissue independent. The analysis of correlation associated with the location of the CpG site in the gene body has led to the identification of several different methylation patterns that affect gene expression, and several examples of methylation activating gene expression were observed. Distinctly opposing or conflicting effects were seen in close proximity on the gene body, where negative and positive correlations were seen at the neighboring CpG sites.


2016 ◽  
Vol 113 (32) ◽  
pp. 9111-9116 ◽  
Author(s):  
Adam J. Bewick ◽  
Lexiang Ji ◽  
Chad E. Niederhuth ◽  
Eva-Maria Willing ◽  
Brigitte T. Hofmeister ◽  
...  

In plants, CG DNA methylation is prevalent in the transcribed regions of many constitutively expressed genes (gene body methylation; gbM), but the origin and function of gbM remain unknown. Here we report the discovery that Eutrema salsugineum has lost gbM from its genome, to our knowledge the first instance for an angiosperm. Of all known DNA methyltransferases, only CHROMOMETHYLASE 3 (CMT3) is missing from E. salsugineum. Identification of an additional angiosperm, Conringia planisiliqua, which independently lost CMT3 and gbM, supports that CMT3 is required for the establishment of gbM. Detailed analyses of gene expression, the histone variant H2A.Z, and various histone modifications in E. salsugineum and in Arabidopsis thaliana epigenetic recombinant inbred lines found no evidence in support of any role for gbM in regulating transcription or affecting the composition and modification of chromatin over evolutionary timescales.


2021 ◽  
Author(s):  
Carlos A. M. Cardoso-Junior ◽  
Boris Yagound ◽  
Isobel Ronai ◽  
Emily J. Remnant ◽  
Klaus Hartfelder ◽  
...  

AbstractIntragenic DNA methylation, also called gene body methylation, is an evolutionarily-conserved epigenetic mechanism in animals and plants. In social insects, gene body methylation is thought to contribute to behavioral plasticity, for example between foragers and nurse workers, by modulating gene expression. However, recent studies have suggested that the majority of DNA methylation is sequence-specific, and therefore cannot act as a flexible mediator between environmental cues and gene expression. To address this paradox, we examined whole-genome methylation patterns in the brains and ovaries of young honey bee workers that had been subjected to divergent social contexts: the presence or absence of the queen. Although these social contexts are known to bring about extreme changes in behavioral and reproductive traits through differential gene expression, we found no significant differences between the methylomes of workers from queenright and queenless colonies. In contrast, thousands of regions were differentially methylated between colonies, and these differences were not associated with differential gene expression in a subset of genes examined. Methylation patterns were highly similar between brain and ovary tissues and only differed in nine regions. These results strongly indicate that DNA methylation is not a driver of differential gene expression between tissues or behavioral morphs. Finally, despite the lack of difference in methylation patterns, queen presence affected the expression of all four DNA methyltransferase genes, suggesting that these enzymes have roles beyond DNA methylation. Therefore, the functional role of DNA methylation in social insect genomes remains an open question.


2019 ◽  
Vol 137 (4) ◽  
pp. 557-569 ◽  
Author(s):  
Stephen A. Semick ◽  
Rahul A. Bharadwaj ◽  
Leonardo Collado-Torres ◽  
Ran Tao ◽  
Joo Heon Shin ◽  
...  

2015 ◽  
Vol 112 (44) ◽  
pp. 13729-13734 ◽  
Author(s):  
Haifeng Wang ◽  
Getu Beyene ◽  
Jixian Zhai ◽  
Suhua Feng ◽  
Noah Fahlgren ◽  
...  

DNA methylation is important for the regulation of gene expression and the silencing of transposons in plants. Here we present genome-wide methylation patterns at single-base pair resolution for cassava (Manihot esculenta, cultivar TME 7), a crop with a substantial impact in the agriculture of subtropical and tropical regions. On average, DNA methylation levels were higher in all three DNA sequence contexts (CG, CHG, and CHH, where H equals A, T, or C) than those of the most well-studied model plant Arabidopsis thaliana. As in other plants, DNA methylation was found both on transposons and in the transcribed regions (bodies) of many genes. Consistent with these patterns, at least one cassava gene copy of all of the known components of Arabidopsis DNA methylation pathways was identified. Methylation of LTR transposons (GYPSY and COPIA) was found to be unusually high compared with other types of transposons, suggesting that the control of the activity of these two types of transposons may be especially important. Analysis of duplicated gene pairs resulting from whole-genome duplication showed that gene body DNA methylation and gene expression levels have coevolved over short evolutionary time scales, reinforcing the positive relationship between gene body methylation and high levels of gene expression. Duplicated genes with the most divergent gene body methylation and expression patterns were found to have distinct biological functions and may have been under natural or human selection for cassava traits.


2018 ◽  
Author(s):  
Stephen A. Semick ◽  
Rahul A. Bharadwaj ◽  
Leonardo Collado-Torres ◽  
Ran Tao ◽  
Joo Heon Shin ◽  
...  

AbstractBackgroundLate-onset Alzheimer’s disease (AD) is a complex age-related neurodegenerative disorder that likely involves epigenetic factors. To better understand the epigenetic state associated with AD represented as variation in DNA methylation (DNAm), we surveyed 420,852 DNAm sites from neurotypical controls (N=49) and late-onset AD patients (N=24) across four brain regions (hippocampus, entorhinal cortex, dorsolateral prefrontal cortex and cerebellum).ResultsWe identified 858 sites with robust differential methylation, collectively annotated to 772 possible genes (FDR<5%, within 10kb). These sites were overrepresented in AD genetic risk loci (p=0.00655), and nearby genes were enriched for processes related to cell-adhesion, immunity, and calcium homeostasis (FDR<5%). We analyzed corresponding RNA-seq data to prioritize 130 genes within 10kb of the differentially methylated sites, which were differentially expressed and had expression levels associated with nearby DNAm levels (p<0.05). This validated gene set includes previously reported (e.g. ANK1, DUSP22) and novel genes involved in Alzheimer’s disease, such as ANKRD30B.ConclusionsThese results highlight DNAm changes in Alzheimer’s disease that have gene expression correlates, implicating DNAm as an epigenetic mechanism underlying pathological molecular changes associated with AD. Furthermore, our framework illustrates the value of integrating epigenetic and transcriptomic data for understanding complex disease.


2020 ◽  
Author(s):  
Libo He ◽  
Denghui Zhu ◽  
Pengfei Chu ◽  
Yongming Li ◽  
Lanjie Liao ◽  
...  

Abstract Background: Grass carp is an important farmed fish in China that infected by many pathogens, especially grass carp reovirus (GCRV). Notably, grass carp showed age-dependent susceptibility to GCRV, while the mechanism remains unclear. Herein, we performed a genome-wide survey of differences in DNA methylation and gene expression between five months old grass carp (FMO, sensitive to GCRV) and three years old grass carp (TYO, resistant to GCRV) aim to uncover the mechanism.Results: Colorimetric quantification revealed global methylation level of TYO fish was higher than that of FMO fish. Whole-genome bisulfite sequencing (WGBS) of two groups revealed 6,214 differentially methylated regions (DMRs) and 4,052 differentially methylated genes (DMGs), with most of DMRs and DMGs showed hypermethylation patterns in TYO fish. Correlation analysis indicated that DNA hypomethylation in promoter negative correlated with gene expression, whereas positive correlation was found between gene-body DNA hypermethylation and gene expression. Enrichment analysis revealed that promoter hypo-DMGs in TYO fish were significant enriched in pathways involved in immune response while gene-body hyper-DMGs in TYO fish were significant enriched in terms related to RNA transcription, biosynthetic, and energy production. RNA-seq indicated these terms or pathways involved in immune response, biosynthetic, and energy production also significant enriched for the up-regulated genes in TYO fish. Conclusions: Collectively, these results revealed the genome-wide DNA methylation variations between grass carp with different ages. DNA methylation and gene expression variations in genes involved in immune response, biosynthetic, and energy production may contributed to the age-dependent susceptibility to GCRV in grass carp. Our results will provide important information for the disease-resistant breeding programs of grass carp and may also benefit to the research of age-dependent diseases in human.


2019 ◽  
Vol 37 (1) ◽  
pp. 31-43 ◽  
Author(s):  
Danelle K Seymour ◽  
Brandon S Gaut

Abstract A subset of genes in plant genomes are labeled with DNA methylation specifically at CG residues. These genes, known as gene-body methylated (gbM), have a number of associated characteristics. They tend to have longer sequences, to be enriched for intermediate expression levels, and to be associated with slower rates of molecular evolution. Most importantly, gbM genes tend to maintain their level of DNA methylation between species, suggesting that this trait is under evolutionary constraint. Given the degree of conservation in gbM, we still know surprisingly little about its function in plant genomes or whether gbM is itself a target of selection. To address these questions, we surveyed DNA methylation across eight grass (Poaceae) species that span a gradient of genome sizes. We first established that genome size correlates with genome-wide DNA methylation levels, but less so for genic levels. We then leveraged genomic data to identify a set of 2,982 putative orthologs among the eight species and examined shifts of methylation status for each ortholog in a phylogenetic context. A total of 55% of orthologs exhibited a shift in gbM, but these shifts occurred predominantly on terminal branches, indicating that shifts in gbM are rarely conveyed over time. Finally, we found that the degree of conservation of gbM across species is associated with increased gene length, reduced rates of molecular evolution, and increased gene expression level, but reduced gene expression variation across species. Overall, these observations suggest a basis for evolutionary pressure to maintain gbM status over evolutionary time.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2383-2383
Author(s):  
Jens Lichtenberg ◽  
Elisabeth F. Heuston ◽  
Cheryl A. Keller ◽  
Ross C. Hardison ◽  
David M. Bodine

Abstract To date numerous datasets of gene expression and epigenetic profiles for mouse and human hematopoietic cells have been generated. While individual data sets for a particular cell type have been correlated, no approach exists to harness all expression and epigenetic profiles for the different types of hematopoietic cells. Our goal is to develop a systems biology platform to compare epigenetic profiles of hematopoietic cells towards a better understanding of epigenetic mechanisms governing hematopoiesis. To provide the necessary foundation to support systematic studies of hematopoiesis, we have developed the Systems Biology Repository (SBR, http://sbrblood.nhgri.nih.gov), a data "ranch" for organizing and analyzing transcriptome and epigenome data cells throughout differentiation. To populate SBR, we extracted, curated, annotated, and integrated all human and mouse hematopoietic datasets available through the Encyclopedia of DNA Elements (ENCODE), the Gene Expression Omnibus (GEO) and the Short Read Repository (SRR). These include genome-wide profiles of DNA methylation, histone methylation and acetylation, transcription factor occupancy (ChIPSeq), chromatin accessibility (DNaseISeq, ATACSeq, FAIRESeq), and coding as well as non-coding transcriptional profiles (RNASeq). To demonstrate the utility of SBR, we conducted three different analyses. The first was a vertical study of HistoneSeq (H3K4me1, H3K4me2, H3K4me3, and H3K27ac), DNA methylation and RNASeq profiles during mouse erythroid differentiation. We found a global decrease in DNA methylation from hematopoietic stem and progenitor cells (HSC) through common myeloid progenitors (CMP), erythroid progenitor cells (MEP) and erythroblasts (ERY; 92936 peaks in HSC to 14422 in ERY). The number of expressed genes (using a tags per million cutoff of 10) increased in erythroid progenitors (8901 in HSC to 10778 in CMP and 10670 in MEP) before decreasing in ERY (8654). 62% of histone marks delineating active enhancers (H3K27ac, H3K4me1) are present in both HSC and ERY, while 48% arise de novo during differentiation. In contrast, only 16% of active promoter specific histone marks (H3K4me2, H3K4me3) are present in both HSC and ERY. For a horizontal analysis we compared the DNA methylation, RNASeq, histone modification (H3K4me1, H3K4me2, H3K4me3, and H3K27ac) and transcription factor binding (GATA1 and NFE2) profiles of erythroblasts (ERY) and megakaryocytes (MEG). We found a similar relationship between gene expression and the histone and DNA methylation profiles in each cell type but differences between expression and in transcription factor occupancy. DNA methylation and H3K4me3 was enriched in the gene body of expressed genes (>36%) for both ERY (p ≤ 0.001) and MEG (p ≤ 0.01). In contrast DNA methylation was enriched in the upstream and downstream regions of non-coding RNA genes (p ≤ 0.001). Transcription factor occupancy was cell type specific: 79% of GATA1 sites are in ERY and 72% of NFE2 sites are in MEG. In erythroblasts, DNA methylation and GATA1 binding in the gene body are associated with gene silencing (4 fold difference, p ≤ 0.001), while in megakaryocytes, DNA methylation and NFE2 binding in the gene body are associated with gene activation (8 fold difference, p ≤ 0.001). We used the Mouse Genome Informatics homology map data to perform a cross-species comparison of the expression profiles of mouse and human multipotent progenitors (MPP), proerythroblasts and orthochromatic erythroblasts. We found a total of 5247 genes expressed at significantly different levels (p ≤ 0.001) between human and mouse MPP, while only 2010 genes were expressed at significantly similar levels (p ≤ 0.001). At the proerythroblast and orthochromatic erythroblast stages 7696 genes and 6571 genes were expressed at significantly different levels (p ≤ 0.001) between human and mouse respectively, while 2024 and 2560 genes were expressed at significantly similar levels (p ≤ 0.001). These data are consistent with previous studies showing differences in the transcriptional profiles of mouse and human hematopoietic cells. In summary, SBR provides a foundation to model the genetic and epigenetic landscape in both the mouse and human hematopoietic system, and enables functional correlations to be made between the species. As SBR is expanded to include data from patient cells, it will be possible to model epigenetic changes associated with disease. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Laura Entrambasaguas ◽  
Miriam Ruocco ◽  
Koen J. F. Verhoeven ◽  
Gabriele Procaccini ◽  
Lazaro Marín-Guirao

AbstractThe role of DNA methylation and its interaction with gene expression and transcriptome plasticity is poorly understood, and current insight comes mainly from studies in very few model plant species. Here, we study gene body DNA methylation (gbM) and gene expression patterns in ecotypes from contrasting thermal environments of two marine plants with contrasting life history strategies in order to explore the potential role epigenetic mechanisms could play in gene plasticity and responsiveness to heat stress. In silico transcriptome analysis of CpGO/E ratios suggested that the bulk of Posidonia oceanica and Cymodocea nodosa genes possess high levels of intragenic methylation. We also observed a correlation between gbM and gene expression flexibility: genes with low DNA methylation tend to show flexible gene expression and plasticity under changing conditions. Furthermore, the empirical determination of global DNA methylation (5-mC) showed patterns of intra and inter-specific divergence that suggests a link between methylation level and the plants’ latitude of origin and life history. Although we cannot discern whether gbM regulates gene expression or vice versa, or if other molecular mechanisms play a role in facilitating transcriptome responsiveness, our findings point to the existence of a relationship between gene responsiveness and gbM patterns in marine plants.


Sign in / Sign up

Export Citation Format

Share Document