scholarly journals Bovine milk somatic cell transcriptomic response to Staphylococcus aureus is dependent on strain genotype

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Dagmara A. Niedziela ◽  
Paul Cormican ◽  
Gilles Foucras ◽  
Finola C. Leonard ◽  
Orla M. Keane

Abstract Background Mastitis is an economically important disease of dairy cows with Staphylococcus aureus a major cause worldwide. Challenge of Holstein-Friesian cows demonstrated that S. aureus strain MOK124, which belongs to Clonal Complex (CC)151, caused clinical mastitis, while strain MOK023, belonging to CC97, caused mild or subclinical mastitis. The aim of this study was to elucidate the molecular mechanisms of the host immune response utilising a transcriptomic approach. Milk somatic cells were collected from cows infected with either S. aureus MOK023 or MOK124 at 0, 24, 48, 72 and 168 h post-infection (hpi) and analysed for differentially expressed (DE) genes in response to each strain. Results In response to MOK023, 1278, 2278, 1986 and 1750 DE genes were found at 24, 48, 72 and 168 hpi, respectively, while 2293, 1979, 1428 and 1544 DE genes were found in response to MOK124 at those time points. Genes involved in milk production (CSN1, CSN10, CSN1S2, CSN2, a-LACTA and PRLR) were downregulated in response to both strains, with a more pronounced decrease in the MOK124 group. Immune response pathways such as NF-κB and TNF signalling were overrepresented in response to both strains at 24 hpi. These immune pathways continued to be overrepresented in the MOK023 group at 48 and 72 hpi, while the Hippo signalling, extracellular matrix interaction (ECM) and tight junction pathways were overrepresented in the MOK124 group between 48 and 168 hpi. Cellular composition analysis demonstrated that a neutrophil response was predominant in response to MOK124, while M1 macrophages were the main milk cell type post-infection in the MOK023 group. Conclusions A switch from immune response pathways to pathways involved in maintaining the integrity of the epithelial cell layer was observed in the MOK124 group from 48 hpi, which coincided with the occurrence of clinical signs in the infected animals. The higher proportion of M1 macrophages in the MOK023 group and lack of substantial neutrophil recruitment in response to MOK023 may indicate immune evasion by this strain. The results of this study highlight that the somatic cell transcriptomic response to S. aureus is dependent on the genotype of the infecting strain.

2021 ◽  
Author(s):  
Dagmara Niedziela ◽  
Paul Cormican ◽  
Gilles Foucras ◽  
Finola Leonard ◽  
Orla Keane

AbstractBackgroundMastitis is an economically important disease of dairy cows with Staphylococcus aureus a major cause worldwide. Challenge of Holstein-Friesian cows demonstrated that a strain belonging to Clonal Complex (CC)151 caused clinical mastitis, while a strain belonging to CC97 caused mild or subclinical mastitis. The aim of this study was to elucidate the molecular mechanisms of the host immune response utilising a transcriptomic approach. Milk somatic cells from cows infected with each strain of S. aureus at 0, 24, 48, 72 and 168 hours post-infection (hpi) were analysed for differentially expressed (DE) genes in response to each strain.ResultsIn response to MOK023 (CC97), 1278, 2278, 1986 and 1750 significant differentially expressed (DE) genes were found at 24, 48, 72 and 168 hpi, respectively, while 2293, 1979, 1428 and 1544 significant DE genes were found in response to MOK124 (CC151) at those time points. Genes involved in milk production (CSN1, CSN10, CSN1S2, CSN2, a-LACTA and PRLR) were downregulated in response to both strains, with a more pronounced decrease in the MOK124 group. Immune response pathways such as NF-κB and TNF signalling were overrepresented in response to both strains at 24 hpi. These immune pathways continued to be overrepresented in the MOK023 group at 48 and 72 hpi, while the Hippo signalling, extracellular matrix interaction (ECM) and tight junction pathways were overrepresented in the MOK124 group between 48 and 168 hpi. Cellular composition analysis demonstrated that a neutrophil response was predominant in response to MOK124, while M1 macrophages were the main milk cell type post-infection in the MOK023 group.ConclusionsA switch from immune response pathways to pathways involved in maintaining the integrity of the epithelial cell layer was observed in the MOK124 group from 48 hpi, which coincided with the occurrence of clinical signs in the infected animals. The higher proportion of M1 macrophages in the MOK023 group and lack of substantial neutrophil recruitment in response to MOK023 may indicate immune evasion by this strain. The results of this study highlight that the somatic cell transcriptomic response to S. aureus is dependent on the genotype of the infecting strain.


2020 ◽  
Author(s):  
Hong Li ◽  
Zhen Wang ◽  
Shumei Chai ◽  
Xiong Bai ◽  
Guohui Ding ◽  
...  

ABSTRACTMicrotus fortis (M. fortis) so far is the only mammal host that exhibits intrinsic resistance against Schistosoma japonicum infection. However, the underlying molecular mechanisms of this intrinsic resistance are not yet known. Here we performed the first de novo genome assembly of M. fortis, comprehensive gene annotation and evolution analysis. Furthermore, we compared the recovery rate of schistosome, pathological change and liver transcriptome between non-permissive host M. fortis and susceptible host mouse at different time points after Schistosome infection. We reveal that Immune response of M. fortis and mouse is different in time and type. M. fortis activates immune and inflammatory responses on the 10th days post infection, involving in multiple pathways, such as leukocyte extravasation, antibody activation (especially IgG3), Fc-gamma receptor mediated phagocytosis, and interferon signaling cascade. The strong immune responses of M. fortis in early stages of infection play important roles in preventing the development of schistosome. On the contrary, intense immune response occurred in mouse in late stages of infection (28~42 days post infection), and cannot eliminate schistosome. Infected mouse suffers severe pathological injury and continuous decrease of important functions such as cell cycle and lipid metabolism. Our findings offer new insights to the intrinsic resistance mechanism of M. fortis against schistosome infection. The genome sequence also provides bases for future studies of other important traits in M. fortis.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Zengqiang Li ◽  
Zhihui Du ◽  
Jie Li ◽  
Yanming Sun

Abstract Background Bashbay sheep (Bbs) has a certain degree of resistance to Mycoplasma ovipneumoniae (Mo), however, Argali hybrid sheep (Ahs) is susceptible to Mo. To understand the molecular mechanisms underlying the difference of the susceptibility for Mo infection, RNA-sequencing technology was used to compare the transcriptomic response of the lung tissue of Mo-infected Bbs and Ahs. Results Six Bbs and six Ahs were divided into experimental group and control group respectively, all of them were experimentally infected with Mo by intratracheal injection. For collecting lung tissue samples, three Bbs and three Ahs were sacrificed on day 4 post-infection, and the others were sacrificed on day 14 post-infection. Total RNA extracted from lung tissue were used for transcriptome analyses based on high-throughput sequencing technique and bioinformatics. The results showed that 212 (146 up-regulated, 66 down-regulated) DEGs were found when comparing transcriptomic data of Bbs and Ahs at 4th dpi, besides, 311 (158 up-regulated, 153 down-regulated) DEGs were found at 14th dpi. After GO analysis, three main GO items protein glycosylation, immune response and positive regulation of gene expression were found related to Mo infection. In addition, there were 20 DEGs enriched in these above items, such as SPLUC1 (BPIFA1), P2X7R, DQA, HO-1 and SP-A (SFTPA-1). Conclusions These selected 20 DEGs associated with Mo infection laid the foundation for further study on the underlying molecular mechanism involved in high level of resistance to Mo expressed by Bbs, meanwhile, provided deeper understandings about the development of pathogenicity and host-pathogen interactions.


2021 ◽  
Vol 14 (1) ◽  
pp. 41
Author(s):  
Hana Votavova ◽  
Zuzana Urbanova ◽  
David Kundrat ◽  
Michaela Dostalova Merkerova ◽  
Martin Vostry ◽  
...  

Deferasirox (DFX) is an oral iron chelator used to reduce iron overload (IO) caused by frequent blood cell transfusions in anemic myelodysplastic syndrome (MDS) patients. To study the molecular mechanisms by which DFX improves outcome in MDS, we analyzed the global gene expression in untreated MDS patients and those who were given DFX treatment. The gene expression profiles of bone marrow CD34+ cells were assessed by whole-genome microarrays. Initially, differentially expressed genes (DEGs) were determined between patients with normal ferritin levels and those with IO to address the effect of excessive iron on cellular pathways. These DEGs were annotated to Gene Ontology terms associated with cell cycle, apoptosis, adaptive immune response and protein folding and were enriched in cancer-related pathways. The deregulation of multiple cancer pathways in iron-overloaded patients suggests that IO is a cofactor favoring the progression of MDS. The DEGs between patients with IO and those treated with DFX were involved predominantly in biological processes related to the immune response and inflammation. These data indicate DFX modulates the immune response mainly via neutrophil-related genes. Suppression of negative regulators of blood cell differentiation essential for cell maturation and upregulation of heme metabolism observed in DFX-treated patients may contribute to the hematopoietic improvement.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Clarence M. Mang’era ◽  
Fathiya M. Khamis ◽  
Erick O. Awuoche ◽  
Ahmed Hassanali ◽  
Fidelis Levi Odhiambo Ombura ◽  
...  

Abstract Background Insect growth regulators (IGRs) can control insect vector populations by disrupting growth and development in juvenile stages of the vectors. We previously identified and described the curry tree (Murraya koenigii (L.) Spreng) phytochemical leaf extract composition (neplanocin A, 3-(1-naphthyl)-l-alanine, lumiflavine, terezine C, agelaspongin and murrayazolinol), which disrupted growth and development in Anopheles gambiae sensu stricto mosquito larvae by inducing morphogenetic abnormalities, reducing locomotion and delaying pupation in the mosquito. Here, we attempted to establish the transcriptional process in the larvae that underpins these phenotypes in the mosquito. Methods We first exposed third-fourth instar larvae of the mosquito to the leaf extract and consequently the inherent phytochemicals (and corresponding non-exposed controls) in two independent biological replicates. We collected the larvae for our experiments sampled 24 h before peak pupation, which was 7 and 18 days post-exposure for controls and exposed larvae, respectively. The differences in duration to peak pupation were due to extract-induced growth delay in the larvae. The two study groups (exposed vs control) were consequently not age-matched. We then sequentially (i) isolated RNA (whole larvae) from each replicate treatment, (ii) sequenced the RNA on Illumina HiSeq platform, (iii) performed differential bioinformatics analyses between libraries (exposed vs control) and (iv) independently validated the transcriptome expression profiles through RT-qPCR. Results Our analyses revealed significant induction of transcripts predominantly associated with hard cuticular proteins, juvenile hormone esterases, immunity and detoxification in the larvae samples exposed to the extract relative to the non-exposed control samples. Our analysis also revealed alteration of pathways functionally associated with putrescine metabolism and structural constituents of the cuticle in the extract-exposed larvae relative to the non-exposed control, putatively linked to the exoskeleton and immune response in the larvae. The extract-exposed larvae also appeared to have suppressed pathways functionally associated with molting, cell division and growth in the larvae. However, given the age mismatch between the extract-exposed and non-exposed larvae, we can attribute the modulation of innate immune, detoxification, cuticular and associated transcripts and pathways we observed to effects of age differences among the larvae samples (exposed vs control) and to exposures of the larvae to the extract. Conclusions The exposure treatment appears to disrupt cuticular development, immune response and oxidative stress pathways in Anopheles gambiae s.s larvae. These pathways can potentially be targeted in development of more efficacious curry tree phytochemical-based IGRs against An. gambiae s.s mosquito larvae.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii214-ii214
Author(s):  
Anupam Kumar ◽  
Katharine Chen ◽  
Claudia Petritsch ◽  
Theodore Nicolaides ◽  
Mariarita Santi-Vicini ◽  
...  

Abstract The determinants of the tumor-associated immune response in brain tumors are poorly understood. Using tumor samples from two molecularly distinct subtypes of lower grade glioma, MAPK-driven glioma with biallelic inactivation of CDKN2A (n=30) and IDH-mutant, 1p/19q-intact astrocytoma (n=29), we demonstrate qualitative and quantitative differences in the tumor-associated immune response and we investigate the molecular mechanisms involved. Histologically the MAPK-driven gliomas were comprised of pleomorphic xanthoastrocytoma (PXA) (n=11) and anaplastic PXA (n=19). Seven patients had paired samples from two sequential surgeries. Immune cell populations and their activity were determined by quantitative multiplex immunostaining and Digital Spatial Profiling and gene expression was analyzed by Nanostring. Functional studies were performed using established cell lines and two new patient-derived lines from MAPK-driven LGGs. MAPK-driven tumors exhibited an increased number of CD8+ T cells and tumor-associated microglial/macrophage (TAMs), including CD163+ TAMs, as compared to IDH-mutant astrocytoma. In contrast, IDH-mutant tumors had increased FOXP3+ immunosuppressive T regulatory cells. Transcriptional and protein level analyses in MAPK-driven tumors suggested an active cytotoxic T cell response with robust expression of granzyme B, present on 27% of CD8+ T cells, increased MHC class I expression, and altered cytokine profiles. Interestingly, MAPK-driven tumors also had increased expression of immunosuppressive molecules, including CXCR4, PD-L1, and VEGFA. Expression differences for cell surface and secreted proteins were confirmed in patient-derived tumor lines and functional relationships between altered chemokine expression and immune cell infiltration was investigated. Our data provide novel insights into the immune contexture of MAPK driven LGGs and suggest MAPK driven gliomas with biallelic inactivation of CDKN2A may be particularly vulnerable to immunotherapeutic modulation


Sign in / Sign up

Export Citation Format

Share Document