scholarly journals Colistin resistance in Gram-negative bacteria analysed by five phenotypic assays and inference of the underlying genomic mechanisms

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Diana Albertos Torres ◽  
Helena M. B. Seth-Smith ◽  
Nicole Joosse ◽  
Claudia Lang ◽  
Olivier Dubuis ◽  
...  

Abstract Background Colistin is used against multi-drug resistant pathogens, yet resistance emerges through dissemination of plasmid-mediated genes (mcr) or chromosomal mutation of genes involved in lipopolysaccharide synthesis (i.e. mgrB, phoPQ, pmrCAB). Phenotypic susceptibility testing is challenging due to poor diffusion of colistin in agar media, leading to an underestimation of resistance. Performance of five phenotypic approaches was compared in the context of different molecular mechanisms of resistance. We evaluated Vitek 2® (bioMérieux, AST N242), Colistin MIC Test Strip (Liofilchem Diagnostici), UMIC (Biocentric), and Rapid Polymyxin™ NP test (ELITechGroup) against the standard broth microdilution (BMD) method. We used whole genome sequencing (WGS) to infer molecular resistance mechanisms. We analysed 97 Enterobacterales and non-fermenting bacterial isolates, largely clinical isolates collected up to 2018. Data was analysed by comparing susceptibility categories (susceptible or resistant) and minimal inhibitory concentrations (MIC). Susceptibility category concordance is the percentage of test results sharing the same category to BMD. MIC concordance was calculated similarly but considering ±1 MIC titre error range. We determined genomic diversity by core genome multi locus sequencing typing (cgMLST) and identified putative antimicrobial resistance genes using NCBI and CARD databases, and manual annotation. Results Of 97 isolates, 54 (56%) were resistant with standard BMD. Highest susceptibility category concordance was achieved by Rapid Polymyxin™ NP (98.8%) followed by UMIC (97.9%), Colistin E-test MIC strip (96.9%) and Vitek 2® (95.6%). Highest MIC concordance was achieved by UMIC (80.4%), followed by Vitek 2® (72.5%) and Colistin E-test MIC strip (62.9%). Among resistant isolates, 23/54 (43%) were intrinsically resistant to colistin, whereas 31/54 (57%) isolates had acquired colistin resistance. Of these, mcr-1 was detected in four isolates and mcr-2 in one isolate. Non-synonymous mutations in mgrB, phoQ, pmrA, pmrB, and pmrC genes were encountered in Klebsiella pneumoniae, Escherichia coli, and Acinetobacter bereziniae resistant isolates. Mutations found in mgrB and pmrB were only identified in isolates exhibiting MICs of ≥16 mg/L. Conclusions The Rapid Polymyxin™ NP test showed highest categorical concordance and the UMIC test provided MIC values with high concordance to BMD. We found colistin resistance in diverse species occurred predominantly through spontaneous chromosomal mutation rather than plasmid-mediated resistance.

2021 ◽  
Author(s):  
Diana Albertos Torres ◽  
Helena M.B. Seth-Smith ◽  
Nicole Jossee ◽  
Claudia Lang ◽  
Oliver Dubius ◽  
...  

Abstract Background Colistin is used against multi-drug resistant pathogens, yet resistance emerges either through dissemination of plasmid-mediated genes (mcr) or chromosomal mutation of genes involved in lipopolysaccharide synthesis (i.e. mgrB, phoPQ, pmrCAB). Phenotypic susceptibility testing is challenging due to poor diffusion of colistin in agar media, leading to an underestimation of resistance. We aimed to compare the performance of four different phenotypic approaches in the context of different molecular mechanism of resistance. Methods We compared the performance of Vitek 2® (bioMérieux, AST N242), Colistin MIC Test Strip (Liofilchem Diagnostici), UMIC (Biocentric), and Rapid Polymyxin NP Test (ELITechGroup) against the standard broth microdilution (BDM) method. We used whole genome sequencing (WGS) to infer the molecular mechanisms of resistance. A total of 97 Enterobacterales and non-fermenting bacterial isolates were collected from clinical samples during 2016–2017 and tested for colistin susceptibility. Data was analysed by comparing the susceptibility category (susceptible or resistant) and minimal inhibitory concentrations (MIC). We determined diversity of isolates by core genome multi locus sequencing typing (cgMLST) and identified antimicrobial resistance genes using NCBI and CARD databases. Results Of the 97 clinical isolates, 54 (56%) were resistant by the standard broth microdilution. The highest susceptibility category concordance was achieved by the Rapid Polymyxin NP test (98.8%) followed by UMIC (97.9%), E-test MIC strip (96.9%) and Vitek 2 (95.6%). The highest MIC concordance was achieved by UMIC (80.4%), followed by Vitek 2 (72.5%) and E-test MIC strip (62.9%). Among the resistant isolates, 23/54 (43%) were intrinsically resistant to colistin, whereas 31/54 (57%) isolates had acquired colistin resistance. Of these, mcr-1 was detected in four isolates and mcr-2 in one isolate. Mutations in mgrB, phoQ, pmrA, pmrB, and pmrC genes that led to amino acid changes were encountered in Klebsiella pneumoniae, Escherichia coli, and Acinetobacter bereziniae resistant isolates. Conclusions The Rapid Polymyxin NP test showed the highest categorical concordance and the UMIC test provided MIC values with a high concordance to the standard method. We found colistin resistance in diverse species occurred predominantly through spontaneous chromosomal mutation rather than plasmid-mediated resistance.


2021 ◽  
Author(s):  
Saranya Vijayakumar ◽  
Jobin John Jacob ◽  
Karthick Vasudevan ◽  
Baby Abirami Shankar ◽  
Maria Lincy Francis ◽  
...  

Colistin resistance in Acinetobacter baumannii is mediated by multiple mechanisms. Recently, mutations within pmrAB two component system and overexpression of eptA due to upstream insertion of ISAba1 play a major role. To characterize colistin resistance mechanisms among the clinical isolates of A. baumannii in India. A total of 224 clinical isolates of A. baumannii collected from 2016 to 2019 were included in this study. Mutations within lipid A biosynthesis and pmrAB genes were characterized by Whole Genome Shotgun sequencing. Twenty eight complete genomes were further characterized for insertional inactivation of lpx genes and the association of ISAba1-eptA using hybrid assembly approach. Non-synonymous mutations like M12I in pmrA, A138T and A444V in pmrB and E117K in lpxD were identified. Four of the five colistin resistant A. baumannii isolates had insertion of ISAba1 upstream eptA. No mcr genes were identified. Overall, the present study highlights the diversity of colistin resistance mechanisms in A. baumannii. ISAba1-driven eptA overexpression could be responsible for colistin resistance among Indian isolates of colistin resistant A. baumannii.


Antibiotics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 102
Author(s):  
Daniela Fortini ◽  
Slawomir Owczarek ◽  
Anna Dionisi ◽  
Claudia Lucarelli ◽  
Sergio Arena ◽  
...  

Background: A collection of human-epidemiologically unrelated S. enterica strains collected over a 3-year period (2016 to 2018) in Italy by the national surveillance Enter-Net Italia was analysed. Methods: Antimicrobial susceptibility tests, including the determination of minimal inhibitory concentrations (MICs) for colistin, were performed. Colistin resistant strains were analysed by PCR to detect mobile colistin resistance (mcr) genes. In mcr-negative S. enterica serovar Enteritidis strains, chromosomal mutations potentially involved in colistin resistance were identified by a genomic approach. Results: The prevalence of colistin-resistant S. enterica strains was 7.7%, the majority (87.5%) were S. Enteritidis. mcr genes were identified only in one strain, a S. Typhimurium monophasic variant, positive for both mcr-1.1 and mcr-5.1 genes in an IncHI2 ST4 plasmid. Several chromosomal mutations were identified in the colistin-resistant mcr-negative S. Enteritidis strains in proteins involved in lipopolysaccharide and outer membrane synthesis and modification (RfbN, LolB, ZraR) and in a component of a multidrug efflux pump (MdsC). These mutated proteins were defined as possible candidates for colistin resistance in mcr-negative S. Enteritidis of our collection. Conclusions: The colistin national surveillance in Salmonella spp. in humans, implemented with genomic-based surveillance, permitted to monitor colistin resistance, determining the prevalence of mcr determinants and the study of new candidate mechanisms for colistin resistance.


2020 ◽  
Vol 20 (10) ◽  
pp. 886-907 ◽  
Author(s):  
Ankur Vaidya ◽  
Shweta Jain ◽  
Sanjeev Sahu ◽  
Pankaj Kumar Jain ◽  
Kamla Pathak ◽  
...  

Traditional cancer treatment includes surgery, chemotherapy, radiotherapy and immunotherapy that are clinically beneficial, but are associated with drawbacks such as drug resistance and side effects. In quest for better treatment, many new molecular targets have been introduced in the last few decades. Finding new molecular mechanisms encourages researchers to discover new anticancer agents. Exploring the mechanism of action also facilitates anticipation of potential resistance mechanisms and optimization of rational combination therapies. The write up describes the leading molecular mechanisms for cancer therapy, including mTOR, tyrosine Wee1 kinase (WEE1), Janus kinases, PI3K/mTOR signaling pathway, serine/threonine protein kinase AKT, checkpoint kinase 1 (Chk1), maternal embryonic leucine-zipper kinase (MELK), DNA methyltransferase I (DNMT1), poly (ADP-ribose) polymerase (PARP)-1/-2, sphingosine kinase-2 (SK2), pan-FGFR, inhibitor of apoptosis (IAP), murine double minute 2 (MDM2), Bcl-2 family protein and reactive oxygen species 1 (ROS1). Additionally, the manuscript reviews the anticancer drugs currently under clinical trials.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S730-S731
Author(s):  
Bing Bai ◽  
Zewen Wen ◽  
Zhiwei Lin ◽  
Tam Vincent H ◽  
Zhijian Yu

Abstract Background Enterococcus faecalis have been regarded as one of the leading causes of the nosocomial infections worldwide. Tigecycline (TGC) is considered as a choice of last resort for the treatment of infections caused by multidrug-resistant E. faecalis, however, the emergence of TGC non-susceptibility has posted the therapeutic challenge. Non-susceptibility in clinical strains could be due to resistance (MIC >0.5 mg/l) or heteroresistance. Therefore, this study aimed to understand the underlying molecular mechanisms of TGC resistance and heteroresistance in E. faecalis. Methods In vitro induction experiments were carried out under TGC pressure with two TGC- sensitive E. faecalis strains. Heteroresistance was evaluated by population analysis profiling (PAP) in 270 clinical TGC- sensitive E. faecalis strains. TGC susceptibility was determined by the agar dilution method. Resistance and heteroresistance mechanisms were investigated by identifying genetic mutations in tetracycline (Tet) target sites and susceptibility testing in the presence of the efflux protein inhibitors phenylalanine-arginine-β-naphthylamide (PaβN) and carbonyl cyanide m chlorophenylhydrazine (CCCP). Comparison of single nucleotide polymorphism in the whole genome between the parental isolate and two TGC-resistant strains were investigated by next-generation sequencing. Results No mutations in Tet target sites in seven TGC heteroresistant strains were present, whereas the mutations in Tet target sites of seven TGC-resistant E. faecalis were frequently found (Table 1). TGC MICs in heteroresistant strains were reduced by CCCP (Table 2). Whole genome sequencing revealed the same non-synonymous mutations and transcoding deletions in the exons of several genes encoding for various enzymes or transfer systems (Table 3). Table 1. The characteristics of the antimicrobial susceptibility, resistance mechanism of TGC-induced resistant isolates Table 2. Characteristics of clinical heteroresistant mother E. faecalis strains and heteroresistance-derived E. faecalis clones Table 3. List of mutation-related genes, amino acids and proteins by comparison of whole genome between the parental isolate and the TGC-induced resistant strains Conclusion Our data indicated that the main mechanism of TGC heteroresistance in E. faecalis might be associated with the efflux pumps. TGC resistance in E. faecalis was associated with mutations in the 16SrRNA site or 30S ribosome protein S10. The genetic mutations in several enzymes and transfer systems might also participate in the resistance development to TGC in E. faecalis. Disclosures All Authors: No reported disclosures


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shixing Liu ◽  
Renchi Fang ◽  
Ying Zhang ◽  
Lijiang Chen ◽  
Na Huang ◽  
...  

Abstract Background The emergence of carbapenem-resistant and colistin-resistant ECC pose a huge challenge to infection control. The purpose of this study was to clarify the mechanism of the carbapenems and colistin co-resistance in Enterobacter cloacae Complex (ECC) strains. Results This study showed that the mechanisms of carbapenem resistance in this study are: 1. Generating carbapenemase (7 of 19); 2. The production of AmpC or ESBLs combined with decreased expression of out membrane protein (12 of 19). hsp60 sequence analysis suggested 10 of 19 the strains belong to colistin hetero-resistant clusters and the mechanism of colistin resistance is increasing expression of acrA in the efflux pump AcrAB-TolC alone (18 of 19) or accompanied by a decrease of affinity between colistin and outer membrane caused by the modification of lipid A (14 of 19). Moreover, an ECC strain co-harboring plasmid-mediated mcr-4.3 and blaNDM-1 has been found. Conclusions This study suggested that there is no overlap between the resistance mechanism of co-resistant ECC strains to carbapenem and colistin. However, the emergence of strain co-harboring plasmid-mediated resistance genes indicated that ECC is a potential carrier for the horizontal spread of carbapenems and colistin resistance.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Kumar Saurabh Singh ◽  
Erick M. G. Cordeiro ◽  
Bartlomiej J. Troczka ◽  
Adam Pym ◽  
Joanna Mackisack ◽  
...  

AbstractThe aphid Myzus persicae is a destructive agricultural pest that displays an exceptional ability to develop resistance to both natural and synthetic insecticides. To investigate the evolution of resistance in this species we generated a chromosome-scale genome assembly and living panel of >110 fully sequenced globally sampled clonal lines. Our analyses reveal a remarkable diversity of resistance mutations segregating in global populations of M. persicae. We show that the emergence and spread of these mechanisms is influenced by host–plant associations, uncovering the widespread co‐option of a host-plant adaptation that also offers resistance against synthetic insecticides. We identify both the repeated evolution of independent resistance mutations at the same locus, and multiple instances of the evolution of novel resistance mechanisms against key insecticides. Our findings provide fundamental insights into the genomic responses of global insect populations to strong selective forces, and hold practical relevance for the control of pests and parasites.


2017 ◽  
Vol 61 (5) ◽  
Author(s):  
Mingquan Cui ◽  
Jinfei Zhang ◽  
Zhen Gu ◽  
Ruichao Li ◽  
Edward Wai-chi Chan ◽  
...  

ABSTRACT The recently discovered colistin resistance element, mcr-1, adds to the list of antimicrobial resistance genes that rapidly erode the antimicrobial efficacy of not only the commonly used antibiotics but also the last-line agents of carbapenems and colistin. This study investigated the prevalence of the mobile colistin resistance determinant mcr-1 in Salmonella strains recovered from clinical settings in China and the transmission potential of mcr-1-bearing mobile elements harbored by such isolates. The mcr-1 gene was recoverable in 1.4% of clinical isolates tested, with the majority of them belonging to Salmonella enterica serotype Typhimurium. These isolates exhibited diverse pulsed-field gel electrophoresis (PFGE) profiles and high resistance to antibiotics other than colistin and particularly to cephalosporins. Plasmid analysis showed that mcr-1 was carried on a variety of plasmids with sizes ranging from ∼30 to ∼250 kb, among which there were conjugative plasmids of ∼30 kb, ∼60 kb, and ∼250 kb and nonconjugative plasmids of ∼140 kb, ∼180 kb, and ∼240 kb. Sequencing of representative mcr-1-carrying plasmids revealed that all conjugative plasmids belonged to the IncX4, IncI2, and IncHI2 types and were highly similar to the corresponding types of plasmids reported previously. Nonconjugative plasmids all belonged to the IncHI2 type, and the nontransferability of these plasmids was attributed to the loss of a region carrying partial or complete tra genes. Our data revealed that, similar to the situation in Escherichia coli, mcr-1 transmission in Salmonella was accelerated by various plasmids, suggesting that transmission of mcr-1-carrying plasmids between different species of Enterobacteriaceae may be a common event.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Qiushuang Sheng ◽  
Runbao Du ◽  
Cunhui Ma ◽  
Yonglin Zhou ◽  
Xue Shen ◽  
...  

Abstract Background The wide spread of plasmid-mediated colistin resistance by mobile colistin resistance (MCR) in Enterobacteriaceae severely limits the clinical application of colistin as a last-line drug against bacterial infection. The identification of colistin potentiator from natural plants or their compound preparation as antibiotic adjuncts is a new promising strategy to meet this challenge. Methods Herein, the synergistic activity, as well as the potential mechanism, of Pingwei pill plus antibiotics against MCR-positive Gram-negative pathogens was examined using checkerboard assay, time-killing curves, combined disk test, western blot assay, and microscope analysis. Additionally, the Salmonella sp. HYM2 infection models of mouse and chick were employed to examine the in vivo efficacy of Pingwei pill in combination with colistin against bacteria infection. Finally, network pharmacology and molecular docking assay were used to predicate other actions of Pingwei pill for Salmonella infection. Results Our results revealed that Pingwei Pill synergistically potentiated the antibacterial activity of colistin against MCR-1-positive bacteria by accelerating the damage and permeability of the bacterial outer membrane with an FIC (Fractional Inhibitory Concentration) index less than 0.5. The treatment of Pingwei Pill neither inhibited bacterial growth nor affected MCR production. Notably, Pingwei Pill in combination with colistin significantly prolonged the median survival in mouse and chick models of infection using the Salmonella sp. strain HYM2, decreased bacteria burden and organ index of infected animal, alleviated pathological damage of cecum, which suggest that Pingwei Pill recovered the therapeutic performance of colistin for MCR-1- positive Salmonella infection in mice and the naturally infected host chick. Pharmacological network topological analysis, molecular docking, bacterial adhesion, and invasion pathway verification assays were performed to identify the other molecular mechanisms of Pingwei Pill as a colistin potentiator against Gram-negative bacteria infection. Conclusion Taken together, NMPA (National Medical Products Administration)-approved Pingwei Pill is a promising adjuvant with colistin for MCR-positive bacterial infection with a shortened R&D (research and development) cycle and affordable R&D cost and risk.


2019 ◽  
Vol 24 (16) ◽  
Author(s):  
Antonio Lozano-Leon ◽  
Carlos Garcia-Omil ◽  
Jacobo Dalama ◽  
Rafael Rodriguez-Souto ◽  
Jaime Martinez-Urtaza ◽  
...  

Nineteen Salmonella strains were isolated from 5,907 randomly selected mussel samples during a monitoring programme for the presence of Salmonella in shellfish in Galicia, north-west Spain (2012–16). Serovars, sequence type and antimicrobial resistance genes were determined through genome sequencing. Presence of the mcr-1 gene in one strain belonging to serovar Rissen and ST-469 was identified. The mcr-1 gene had not been isolated previously in environmental Salmonella isolated from mussels in Spain.


Sign in / Sign up

Export Citation Format

Share Document