scholarly journals Rhizosphere analysis of field-grown Panax ginseng with different degrees of red skin provides the basis for preventing red skin syndrome

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Ling Dong ◽  
Xingbo Bian ◽  
Yan Zhao ◽  
He Yang ◽  
Yonghua Xu ◽  
...  

Abstract Background Ginseng red skin root syndrome (GRS) is one of the most common ginseng (Panax ginseng Meyer) diseases. It leads to a severe decline in P. ginseng quality and seriously affects the P. ginseng industry in China. However, as a root disease, the characteristics of the GRS rhizosphere microbiome are still unclear. Methods The amplicon bacterial 16 S rRNA genes and fungal ITS (Internal Transcribed Spacer) regions Illumina sequencing technology, combined with microbial diversity and composition analysis based on R software, was used to explore the relationship between soil ecological environment and GRS. Results There were significant differences in the diversity and richness of soil microorganisms between the rhizosphere with different degrees of disease, especially between healthy P. ginseng (HG) and heavily diseased groups. The variation characteristics of microbial abundance in different taxa levels were analyzed. The interaction network of rhizosphere microorganisms of P. ginseng under GRS background was established. We also found that different P. ginseng rhizosphere microbial communities have multiple changes in stability and complexity through the established interaction network. Microbes closely related to potential pathogenic fungi were also identified according to the interaction network, which provided clues for looking for biological control agents. Finally, the Distance-based redundancy analysis (dbRDA) results indicated that total phosphorus (TP), available potassium (AK), available phosphorus (AP), catalase (CAT), invertase (INV) are the key factors that influence the microbial communities. Moreover, the content of these key factors in the rhizosphere was negatively correlated with disease degrees. Conclusions In this study, we comprehensively analyzed the rhizosphere characteristics of P. ginseng with different levels of disease, and explored the interaction relationship among microorganisms. These results provide a basis for soil improvement and biological control of field-grown in the future.

2021 ◽  
Author(s):  
Xingbo Bian ◽  
Ling Dong ◽  
Yan Zhao ◽  
He Yang ◽  
Yonghua Xu ◽  
...  

Abstract Background Ginseng red skin root syndrome (GRS) is one of the most common ginseng diseases. It leads to a severe decline in ginseng quality and seriously affects the ginseng industry in China. However, as a root disease, the characteristics of GRS rhizosphere microbiome are still unclear. Methods The amplicon sequencing technology, combined with bioinformatics analysis, was used to explore the relationship between soil ecological environment and GRS. Results There were significant differences in the diversity and richness of soil microorganisms between the rhizosphere with different degrees of disease, especially between healthy ginseng (HG) and heavily diseased groups. We also found that bacterial communities underwent multiple changes between complex stability and simple instability in different ginseng rhizospheres through the established interaction networks. The GRS group also had more competition with each other and ecological niche separation than the HG group. The fungal community's stability decreased significantly in the early stages of the disease, followed by the formation of a stable and complex fungal community. The GRS groups significantly increased interspecies cooperation and ecological niche overlap in the fungal network than the HG group. Microbes closely related to potential pathogenic fungi were also identified according to the interaction network, which provided clues for looking for biological control agents. Finally, the Distance-based redundancy analysis (dbRDA) results indicated that total P (TP), available K (AK), available P (AP), catalase (CAT), invertase (INV) are the key factors that influence the microbial communities. Conclusions This study collectively analyzed the changing characteristics in ginseng rhizosphere and provided the basis for soil improvement and biological control of field-grown ginseng.


2014 ◽  
Vol 14 (2) ◽  
Author(s):  
R. Soelistijono

This study examines the effectiveness of mycorrhizal Rhizoctonia resistance induction in Phalaenopsis amabilis against Fusarium sp. Fusarium solani is known as pathogens that attack many orchids P. amabilis (Chung et al., 2011) compared to other pathogenic fungi. Attack of Fusarium sp. will cause rot and yellow colored leaves. Until now there has been known as a biological control orchid against Fusarium sp. In this study tested the endurance locations in Sleman and Surakarta to see the effectiveness of a good orchid growth induced by Rhizoctonia mycorrhizal or not to attack by Fusarium sp. The results of the study showed that mycorrhizal Rhizoctonia able to inhibit the attack of Fusarium sp. It is shown by the value of the index of disease resistance  (DSI) in P. amabilis orchid mycorrhizal Rhizoctonia induced lower than that not induced. Mycorrhizal Rhizoctonia induction results in Sleman provide a more real than mycorrhizal Rhizoctonia induction in Surakarta.


2020 ◽  
Vol 8 (11) ◽  
pp. 1657
Author(s):  
Abdul-Salam Juhmani ◽  
Alessandro Vezzi ◽  
Mohammad Wahsha ◽  
Alessandro Buosi ◽  
Fabio De Pascale ◽  
...  

Seaweeds are a group of essential photosynthetic organisms that harbor a rich diversity of associated microbial communities with substantial functions related to host health and defense. Environmental and anthropogenic stressors may disrupt the microbial communities and their metabolic activity, leading to host physiological alterations that negatively affect seaweeds’ performance and survival. Here, the bacterial communities associated with one of the most common seaweed, Ulva laetevirens Areshough, were sampled over a year at three sites of the lagoon of Venice affected by different environmental and anthropogenic stressors. Bacterial communities were characterized through Illumina sequencing of the V4 hypervariable region of 16S rRNA genes. The study demonstrated that the seaweed associated bacterial communities at sites impacted by environmental stressors were host-specific and differed significantly from the less affected site. Furthermore, these communities were significantly distinct from those of the surrounding seawater. The bacterial communities’ composition was significantly correlated with environmental parameters (nutrient concentrations, dissolved oxygen saturation, and pH) across sites. This study showed that several more abundant bacteria on U. laetevirens at stressed sites belonged to taxa related to the host response to the stressors. Overall, environmental parameters and anthropogenic stressors were shown to substantially affect seaweed associated bacterial communities, which reflect the host response to environmental variations.


2021 ◽  
Vol 7 (5) ◽  
pp. 328
Author(s):  
María Dolores Pejenaute-Ochoa ◽  
Carlos Santana-Molina ◽  
Damien P. Devos ◽  
José Ignacio Ibeas ◽  
Alfonso Fernández-Álvarez

Protein O-mannosyltransferases (Pmts) comprise a group of proteins that add mannoses to substrate proteins at the endoplasmic reticulum. This post-translational modification is important for the faithful transfer of nascent glycoproteins throughout the secretory pathway. Most fungi genomes encode three O-mannosyltransferases, usually named Pmt1, Pmt2, and Pmt4. In pathogenic fungi, Pmts, especially Pmt4, are key factors for virulence. Although the importance of Pmts for fungal pathogenesis is well established in a wide range of pathogens, questions remain regarding certain features of Pmts. For example, why does the single deletion of each pmt gene have an asymmetrical impact on host colonization? Here, we analyse the origin of Pmts in fungi and review the most important phenotypes associated with Pmt mutants in pathogenic fungi. Hence, we highlight the enormous relevance of these glycotransferases for fungal pathogenic development.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 865
Author(s):  
Lantian Su ◽  
Xinxin Liu ◽  
Guangyao Jin ◽  
Yue Ma ◽  
Haoxin Tan ◽  
...  

In recent decades, wild sable (Carnivora Mustelidae Martes zibellina) habitats, which are often natural forests, have been squeezed by anthropogenic disturbances such as clear-cutting, tilling and grazing. Sables tend to live in sloped areas with relatively harsh conditions. Here, we determine effects of environmental factors on wild sable gut microbial communities between high and low altitude habitats using Illumina Miseq sequencing of bacterial 16S rRNA genes. Our results showed that despite wild sable gut microbial community diversity being resilient to many environmental factors, community composition was sensitive to altitude. Wild sable gut microbial communities were dominated by Firmicutes (relative abundance 38.23%), followed by Actinobacteria (30.29%), and Proteobacteria (28.15%). Altitude was negatively correlated with the abundance of Firmicutes, suggesting sable likely consume more vegetarian food in lower habitats where plant diversity, temperature and vegetation coverage were greater. In addition, our functional genes prediction and qPCR results demonstrated that energy/fat processing microorganisms and functional genes are enriched with increasing altitude, which likely enhanced metabolic functions and supported wild sables to survive in elevated habitats. Overall, our results improve the knowledge of the ecological impact of habitat change, providing insights into wild animal protection at the mountain area with hash climate conditions.


mBio ◽  
2015 ◽  
Vol 6 (2) ◽  
Author(s):  
Roxana J. Hickey ◽  
Xia Zhou ◽  
Matthew L. Settles ◽  
Julie Erb ◽  
Kristin Malone ◽  
...  

ABSTRACTPuberty is an important developmental stage wherein hormonal shifts mediate the physical and physiological changes that lead to menarche, but until now, the bacterial composition of vaginal microbiota during this period has been poorly characterized. We performed a prospective longitudinal study of perimenarcheal girls to gain insight into the timing and sequence of changes that occur in the vaginal and vulvar microbiota during puberty. The study enrolled 31 healthy, premenarcheal girls between the ages of 10 and 12 years and collected vaginal and vulvar swabs quarterly for up to 3 years. Bacterial composition was characterized by Roche 454 pyrosequencing and classification of regions V1 to V3 of 16S rRNA genes. Contrary to expectations, lactic acid bacteria, primarily Lactobacillus spp., were dominant in the microbiota of most girls well before the onset of menarche in the early to middle stages of puberty.Gardnerella vaginaliswas detected at appreciable levels in approximately one-third of subjects, a notable finding considering that this organism is commonly associated with bacterial vaginosis in adults. Vulvar microbiota closely resembled vaginal microbiota but often exhibited additional taxa typically associated with skin microbiota. Our findings suggest that the vaginal microbiota of girls begin to resemble those of adults well before the onset of menarche.IMPORTANCEThis study addresses longitudinal changes in vaginal and vulvar microbial communities prior to and immediately following menarche. The research is significant because microbial ecology of the vagina is an integral aspect of health, including resistance to infections. The physiologic changes of puberty and initiation of cyclic menstruation are likely to have profound effects on vaginal microbiota, but almost nothing is known about changes that normally occur during this time. Our understanding has been especially hampered by the lack of thorough characterization of microbial communities using techniques that do not rely on the cultivation of fastidious bacteria, as well as a dearth of studies on girls in the early to middle stages of puberty. This study improves our understanding of the normal development of vaginal microbiota during puberty and onset of menarche and may better inform clinical approaches to vulvovaginal care of adolescent girls.


mBio ◽  
2015 ◽  
Vol 6 (6) ◽  
Author(s):  
Kyle C. Costa ◽  
Megan Bergkessel ◽  
Scott Saunders ◽  
Jonas Korlach ◽  
Dianne K. Newman

ABSTRACTDiverse bacteria, including severalPseudomonasspecies, produce a class of redox-active metabolites called phenazines that impact different cell types in nature and disease. Phenazines can affect microbial communities in both positive and negative ways, where their presence is correlated with decreased species richness and diversity. However, little is known about how the concentration of phenazines is modulatedin situand what this may mean for the fitness of members of the community. Through culturing of phenazine-degrading mycobacteria, genome sequencing, comparative genomics, and molecular analysis, we identified several conserved genes that are important for the degradation of threePseudomonas-derived phenazines: phenazine-1-carboxylic acid (PCA), phenazine-1-carboxamide (PCN), and pyocyanin (PYO). PCA can be used as the sole carbon source for growth by these organisms. Deletion of several genes inMycobacterium fortuitumabolishes the degradation phenotype, and expression of two genes in a heterologous host confers the ability to degrade PCN and PYO. In cocultures with phenazine producers, phenazine degraders alter the abundance of different phenazine types. Not only does degradation support mycobacterial catabolism, but also it provides protection to bacteria that would otherwise be inhibited by the toxicity of PYO. Collectively, these results serve as a reminder that microbial metabolites can be actively modified and degraded and that these turnover processes must be considered when the fate and impact of such compounds in any environment are being assessed.IMPORTANCEPhenazine production byPseudomonasspp. can shape microbial communities in a variety of environments ranging from the cystic fibrosis lung to the rhizosphere of dryland crops. For example, in the rhizosphere, phenazines can protect plants from infection by pathogenic fungi. The redox activity of phenazines underpins their antibiotic activity, as well as providing pseudomonads with important physiological benefits. Our discovery that soil mycobacteria can catabolize phenazines and thereby protect other organisms against phenazine toxicity suggests that phenazine degradation may influence turnoverin situ. The identification of genes involved in the degradation of phenazines opens the door to monitoring turnover in diverse environments, an essential process to consider when one is attempting to understand or control communities influenced by phenazines.


Proceedings ◽  
2021 ◽  
Vol 66 (1) ◽  
pp. 22
Author(s):  
Sara Fareed Mohamed Wahdan ◽  
François Buscot ◽  
Witoon Purahong

The return of plant residues to the ground is used to promote soil carbon sequestration, improve soil structure, reduce evaporation, and help to fix additional carbon dioxide in the soil. The microbial communities with diverse ecological functions that colonize plant residues during decomposition are expected to be highly dynamic. We aimed to characterize microbial communities colonizing wheat straw residues and their ecological functions during the early phase of straw decomposition. The experiment, run in Central Germany, was conducted in a conventional farming system under both ambient conditions and a future climate scenario expected in 50–70 years from now. We used MiSeq illumina sequencing and network analysis of bacterial 16S rRNA and fungal ITS genes. Our results show that future climate alters the dynamics of bacterial and fungal communities during decomposition. We detected various microbial ecological functions within wheat straw residues such as plant growth-promoting bacteria, N-fixing bacteria, saprotrophs, and plant pathogenic fungi. Interestingly, plant pathogenic fungi dominated (~87% of the total sequences) within the wheat residue mycobiome under both ambient and future climate conditions. Therefore, we applied co-occurrence network analysis to predict the potential impacts of climate change on the interaction between pathogenic community and other bacterial and fungal microbiomes. The network under ambient climate consisted of 91 nodes and 129 correlations (edges). The highest numbers of connections were detected for the pathogens Mycosphaerella tassiana and Neosetophoma rosigena. The network under future climate consisted of 100 nodes and 170 correlations. The highest numbers of connections were detected for the pathogens Pseudopithomyces rosae and Gibellulopsis piscis. We conclude that the future climate significantly changes the interactions between plant pathogenic fungi and other microorganisms during the early phrase of decomposition.


Sign in / Sign up

Export Citation Format

Share Document