scholarly journals Alterations in the leaf lipidome of Brassica carinata under high-temperature stress

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zolian Zoong Lwe ◽  
Saroj Sah ◽  
Leelawatti Persaud ◽  
Jiaxu Li ◽  
Wei Gao ◽  
...  

Abstract Background Brassica carinata (A) Braun has recently gained increased attention across the world as a sustainable biofuel crop. B. carinata is grown as a summer crop in many regions where high temperature is a significant stress during the growing season. However, little research has been conducted to understand the mechanisms through which this crop responds to high temperatures. Understanding traits that improve the high-temperature adaption of this crop is essential for developing heat-tolerant varieties. This study investigated lipid remodeling in B. carinata in response to high-temperature stress. A commercial cultivar, Avanza 641, was grown under sunlit-controlled environmental conditions in Soil-Plant-Atmosphere-Research (SPAR) chambers under optimal temperature (OT; 23/15°C) conditions. At eight days after sowing, plants were exposed to one of the three temperature treatments [OT, high-temperature treatment-1 (HT-1; 33/25°C), and high-temperature treatment-2 (HT-2; 38/30°C)]. The temperature treatment period lasted until the final harvest at 84 days after sowing. Leaf samples were collected at 74 days after sowing to profile lipids using electrospray-ionization triple quadrupole mass spectrometry. Results Temperature treatment significantly affected the growth and development of Avanza 641. Both high-temperature treatments caused alterations in the leaf lipidome. The alterations were primarily manifested in terms of decreases in unsaturation levels of membrane lipids, which was a cumulative effect of lipid remodeling. The decline in unsaturation index was driven by (a) decreases in lipids that contain the highly unsaturated linolenic (18:3) acid and (b) increases in lipids containing less unsaturated fatty acids such as oleic (18:1) and linoleic (18:2) acids and/or saturated fatty acids such as palmitic (16:0) acid. A third mechanism that likely contributed to lowering unsaturation levels, particularly for chloroplast membrane lipids, is a shift toward lipids made by the eukaryotic pathway and the channeling of eukaryotic pathway-derived glycerolipids that are composed of less unsaturated fatty acids into chloroplasts. Conclusions The lipid alterations appear to be acclimation mechanisms to maintain optimal membrane fluidity under high-temperature conditions. The lipid-related mechanisms contributing to heat stress response as identified in this study could be utilized to develop biomarkers for heat tolerance and ultimately heat-tolerant varieties.

2018 ◽  
Author(s):  
Jinxin Li ◽  
Tingting Mao ◽  
Zhengting Lu ◽  
Mengxue Li ◽  
Zhengting Lu ◽  
...  

AbstractThe global warming has affected the growth, development and reproduction of insects. However, the molecular mechanism of high temperature stress-mediated metamorphosis regulation of lepidopteran insect has not been elucidated. In this study, the relationship between the insect developmental process and endogenous hormone level was investigated under high temperature (36 ° C) stress in Bombyx mori (B. mori). The results showed that the duration of 5th instar larvae were shortened by 28 ± 2 h, and the content of 20E was up-regulated significantly after 72 h of high temperature treatment, while the transcription levels of 20E response genes E93, Br-C, USP, E75 were up-regulated 1.35, 1.25, 1.28, and 1.27-fold, respectively. The high temperature treatment promoted the phosphorylation level of Akt and the downstream BmCncC/keap1 pathway was activated, the transcription levels of 20E synthesis-related genes cyp302a1, cyp306a1, cyp314a1 and cyp315a1 were up-regulated by 1.12, 1.51, 2.17 and 1.23-fold, respectively. After treatment with double stranded RNA of BmCncC (dsBmCncC) in BmN cells, the transcription levels of cyp302a1 and cyp306a1 were significantly decreased, whereas up-regulated by 2.15 and 1.31-fold, respectively, after treatment with CncC activator Curcumin. These results suggested that BmCncC/keap1-mediated P450 genes (cyp302a1, cyp306a1) expression resulted in the changes of endogenous hormone level, which played an important role in the regulation of metamorphosis under high temperature stress. Studies provide novel clues for understanding the CncC/keap1 pathway-mediated metamorphosis regulation mechanism in insects.Author SummaryMammalian nuclear transcription factor Nrf2 (NF-E2-related factor 2) plays an important role in the stress response of cells. CncC is a homolog of mammalian Nrf2 in insect, regulating the genes expression of insect antioxidant enzymes and cytochrome P450 detoxification enzyme. Evidence suggests that the CncC/Keap1 pathway also plays an important role in regulating insect development. Here, we investigated the regulatory mechanism between the CncC/Keap1 pathway and metabolism of silkworm hormones in Lepidoptera. We found that high temperature induction accelerated the development of silkworm, the ecdysone content and related metabolic genes in hemolymph were significantly up-regulated, the CncC/Keap1 pathway was activated, and the expression of BmCncC was significantly increased, indicating that the Cncc/Keap1 pathway plays an important role in this process. The expression of cyp302a1 and cyp306a1 was significantly decreased by RNA interference with BmCncC, which indicated that CncC in silkworm had a regulatory relationship with downstream 20E synthetic gene. In summary, the results indicate that the CncC/Keap1 pathway plays an important role in regulating hormone metabolism in silkworm, providing a basis for further study of the relationship between CncC/Keap1 pathway and development in insects.


2018 ◽  
Vol 45 (9) ◽  
pp. 911 ◽  
Author(s):  
She Tang ◽  
Haixiang Zhang ◽  
Ling Li ◽  
Xia Liu ◽  
Lin Chen ◽  
...  

High temperature has adverse effects on rice growth by inhibiting the flag leaf photosynthetic and antioxidant capacity, which can be alleviated by various exogenous chemicals such as spermidine (Spd). However, the role of Spd in conferring heat tolerance in rice is not well documented. Conventional japonica rice varieties Wuyunjing 24 and Ningjing 3 were treated with high temperatures at 37.5/27.0°C (day/night) and foliar sprayed with 1 mmol L−1 Spd after flowering. Results showed activities of superoxide dismutase (SOD) and peroxidase (POD) activities were deceased during high temperature treatment and eventually lead to the malondialdehyde (MDA) accumulation. Exogenous Spd significantly increased both SOD and POD activities at the later stage of high-temperature treatment, and reduced MDA accumulation were identified in both rice varieties. Application of Spd further increased the amount of soluble sugars during high temperature stress and that maintained the osmotic equilibrium of rice leaves. Spd significantly increased photosystem II (ΦPSII), photosynthetic electron transport rate (ETR), variable fluorescence/maximum fluorescence ratio (Fvʹ/Fmʹ), stomatal conductance and the photochemical reaction of light energy ratio (Pr), and ultimately improved the photosynthetic and transpiration rate during high temperature stress. In conclusion, exogenous Spd can effectively alleviate the adverse consequences of high temperature and could be further applied to provide strategies in mitigating the challenges of global warming-induced yield loss and other possible relevant issues.


2016 ◽  
Vol 96 (3) ◽  
pp. 474-484 ◽  
Author(s):  
Yan-Qing Wu ◽  
Da-Qiu Zhao ◽  
Chen-Xia Han ◽  
Jun Tao

To clarify the theoretical basis of the differences in high temperature stress tolerance among herbaceous peony (Paeonia lactiflora Pall.), we investigated the heat injury index of twelve P. lactiflora cultivars. Of these, heat-tolerant ‘Zifengyu’ and moderately heat-tolerant ‘Hongyanzhenghui’ were selected to study the biochemical and molecular responses to high temperature stress. ‘Zifengyu’ had reduced malondialdehyde (MDA) content, increased soluble sugar, chlorophyll (Chl) a, Chl b, Chl a + b. and carotenoid contents, as well as elevated antioxidant enzymes activities, photosynthetic rate (Pn), transpiration rate (Tr) and relatively intact cellular structures compared with ‘Hongyanzhenghui’, especially when the temperature was the highest. Additionally, we isolated partial cDNAs of two heat shock protein genes (HSP60 and HSP90) from P. lactiflora, which were 880-bp and 1077-bp nucleotides in length, respectively. The expression levels of PlHSP60, PlHSP70 and PlHSP90 were lower in ‘Zifengyu’ than in ‘Hongyanzhenghui’ for the first three of four developmental stages examined. These results indicated that heat-tolerant P. lactiflora cultivar could effectively scavenge reactive oxygen species (ROS), protect cellular structures, reduce thermal damage and delay the death of plants by enhancing antioxidant enzymes activities and HSP expression under high temperature stress. These findings provide a theoretical basis for breeding heat-tolerant P. lactiflora cultivars.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0244198
Author(s):  
Xiaoxiao Qin ◽  
Panpan Li ◽  
Shaowei Lu ◽  
Yanchuan Sun ◽  
Lifeng Meng ◽  
...  

High temperatures induce early bolting in lettuce (Lactuca sativa L.), which decreases both quality and production. However, knowledge of the molecular mechanism underlying high temperature promotes premature bolting is lacking. In this study, we compared lettuce during the bolting period induced by high temperatures (33/25 °C, day/night) to which raised under controlled temperatures (20/13 °C, day/night) using iTRAQ-based phosphoproteomic analysis. A total of 3,814 phosphorylation sites located on 1,766 phosphopeptides from 987 phosphoproteins were identified after high-temperature treatment,among which 217 phosphoproteins significantly changed their expression abundance (116 upregulated and 101 downregulated). Most phosphoproteins for which the abundance was altered were associated with the metabolic process, with the main molecular functions were catalytic activity and transporter activity. Regarding the functional pathway, starch and sucrose metabolism was the mainly enriched signaling pathways. Hence, high temperature influenced phosphoprotein activity, especially that associated with starch and sucrose metabolism. We suspected that the lettuce shorten its growth cycle and reduce vegetative growth owing to changes in the contents of starch and soluble sugar after high temperature stress, which then led to early bolting/flowering. These findings improve our understanding of the regulatory molecular mechanisms involved in lettuce bolting.


Author(s):  
V. Jaldhani ◽  
D. Sanjeeva Rao ◽  
P. Beulah ◽  
B. Srikanth ◽  
P. R. Rao ◽  
...  

Aims: To assess heat-induced PSII damage and efficiency in eight promising backcross introgression lines (BC2F6) of KMR-3R/N22 possessing qHTSF1.1 and qHTSF4.1. Study Design:  Randomized Complete Block Design (RCBD) with three replications. Place and Duration of Study: ICAR-Indian Institute of Rice Research, Hyderabad India during wet/rainy (Kharif) season 2018. Methodology: Eight ILs (BC2F6) and parents were evaluated for heat tolerance. The high- temperature stress was imposed by enclosing the crop with a poly cover tent (Polyhouse) just before the anthesis stage. The fluorescence parameters viz., maximum efficiency of PSII photochemistry (Fv/Fm), Electron transport rate (ETR), effective PSII quantum yield (ΦPSII), coefficient of photochemical quenching (qP) and coefficient of non-photochemical quenching (qN) were measured under ambient and high-temperature stress. Results: The heat-tolerance potential of ILs was assessed in terms of PSII activity. The results indicated that significant differences were observed between treatments (T), genotypes (G) and the interaction between T × G.  The physiological basis of introgressed QTLs controls the spikelet fertility by maintaining the productive and adaptive strategies in heat-tolerant QTL introgressed lines with stable photosynthetic apparatus (PSII) under high-temperature stress. Conclusion: The Fv/Fm ratio denotes the maximum quantum yield of PSII. The heat-tolerant QTL introgressed lines exhibited stable photosynthetic apparatus (PSII) and noted better performance under high-temperature stress. They may be used as donors for fluorescence traits in breeding rice for high-temperature tolerance.


Author(s):  
Syed Bilal Hussain ◽  
Ali Bakhsh ◽  
Muhammad Zubair

A comparison was made of the physiological and morphological differences between Inqlab-91 (hexaploid) and Langdon (tetralpoid) wheat genotypes in response to high temperature stress applied at third leaf stage of growth. Electrolytes leakage technique was used to detect differences in the heat sensitivities of leaves of Inqlab-91 and Langdon. This method showed that at both 35 or 40°C Inqlab-91 was more heat tolerant than Langdon.


2020 ◽  
Vol 47 (5) ◽  
pp. 440 ◽  
Author(s):  
Syed Adeel Zafar ◽  
Amjad Hameed ◽  
Muhammad Ashraf ◽  
Abdus Salam Khan ◽  
Zia-ul- Qamar ◽  
...  

Climatic variations have increased the occurrence of heat stress during critical growth stages, which negatively affects grain yield in rice. Plants adapt to harsh environments, and particularly high-temperature stress, by regulating their physiological and biochemical processes, which are key tolerance mechanisms. The identification of heat-tolerant rice genotypes and reliable selection indices are crucial for rice improvement programs. Here, we evaluated the response of a rice mutant population for high-temperature stress at the seedling and reproductive stages based on agronomic, physiological and molecular indices. Estimates of variance components revealed significant differences (P < 0.001) among genotypes, treatments and their interactions for almost all traits. The principal component analysis showed significant diversity among genotypes and traits under high-temperature stress. The mutant HTT-121 was identified as the most heat-tolerant mutant with higher grain yield, panicle fertility, cell membrane thermo-stability (CMTS) and antioxidant enzyme levels under heat stress. Various seedling-based morpho-physiological traits (leaf fresh weight, relative water contents, malondialdehyde, CMTS) and biochemical traits (superoxide dismutase, catalase and hydrogen peroxide) explained variations in grain yield that could be used as selection indices for heat tolerance in rice during early growth. Notably, heat-sensitive mutants accumulated reactive oxygen species, reduced catalase activity and upregulated OsSRFP1 expression under heat stress, suggesting their key roles in regulating heat tolerance in rice. The heat-tolerant mutants identified in this study could be used in breeding programs and to develop mapping populations to unravel the underlying genetic architecture for heat-stress adaptability.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zolian Zoong Lwe ◽  
Saroj Sah ◽  
Leelawatti Persaud ◽  
Jiaxu Li ◽  
Wei Gao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document