scholarly journals Phosphoproteomic analysis of lettuce (Lactuca sativa L.) reveals starch and sucrose metabolism functions during bolting induced by high temperature

PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0244198
Author(s):  
Xiaoxiao Qin ◽  
Panpan Li ◽  
Shaowei Lu ◽  
Yanchuan Sun ◽  
Lifeng Meng ◽  
...  

High temperatures induce early bolting in lettuce (Lactuca sativa L.), which decreases both quality and production. However, knowledge of the molecular mechanism underlying high temperature promotes premature bolting is lacking. In this study, we compared lettuce during the bolting period induced by high temperatures (33/25 °C, day/night) to which raised under controlled temperatures (20/13 °C, day/night) using iTRAQ-based phosphoproteomic analysis. A total of 3,814 phosphorylation sites located on 1,766 phosphopeptides from 987 phosphoproteins were identified after high-temperature treatment,among which 217 phosphoproteins significantly changed their expression abundance (116 upregulated and 101 downregulated). Most phosphoproteins for which the abundance was altered were associated with the metabolic process, with the main molecular functions were catalytic activity and transporter activity. Regarding the functional pathway, starch and sucrose metabolism was the mainly enriched signaling pathways. Hence, high temperature influenced phosphoprotein activity, especially that associated with starch and sucrose metabolism. We suspected that the lettuce shorten its growth cycle and reduce vegetative growth owing to changes in the contents of starch and soluble sugar after high temperature stress, which then led to early bolting/flowering. These findings improve our understanding of the regulatory molecular mechanisms involved in lettuce bolting.

2020 ◽  
Author(s):  
Jing-hong Hao ◽  
He-Nan Su ◽  
Li-li Zhang ◽  
Chao-jie Liu ◽  
Ying-yan Han ◽  
...  

Abstract Background Lettuce (Lactuca sativa L.), one of the most economically important leaf vegetables, exhibits early bolting under high-temperature conditions. Early bolting leads to loss of commodity value and edibility, leading to considerable loss and waste of resources. However, the initiation and molecular mechanism underlying early bolting induced by high temperature remains largely elusive. Results To better understand this phenomenon, the bolting initiation period of lettuce was defined, and a comparative proteomic analysis was conducted in the initiation period of bolting induced by a high temperature (33 °C) and a control temperature (20 °C) using iTRAQ-based proteomics, phenotypic measurement, and biological verification by RT-qPCR. Morphological and microscopic observation showed that the initiation of bolting occurred 8 days after high-temperature treatment. Fructose rapidly accumulated after high-temperature treatment. During bolting initiation, of the 3305 identified proteins, a total of 93 proteins exhibited differential abundances, 38 of which were up-regulated, and 55 were down-regulated. Approximately 38% of the proteins were involved in metabolic pathways and were mainly clustered in energy metabolism and protein synthesis. Furthermore, some proteins involved in sugar synthesis were differentially expressed, which were also associated with energy production. Conclusions This is the first report on the metabolic changes involved in bolting initiation in lettuce. Our study suggested that energy metabolism and ribosomal proteins are pivotal components during bolting initiation. This study could provide a potential regulatory mechanism for the initiation of early bolting by high temperature, which could have applications in the manipulation of lettuce for breeding.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jing-hong Hao ◽  
He-Nan Su ◽  
Li-li Zhang ◽  
Chao-jie Liu ◽  
Ying-yan Han ◽  
...  

Abstract Background Lettuce (Lactuca sativa L.), one of the most economically important leaf vegetables, exhibits early bolting under high-temperature conditions. Early bolting leads to loss of commodity value and edibility, leading to considerable loss and waste of resources. However, the initiation and molecular mechanism underlying early bolting induced by high temperature remain largely elusive. Results In order to better understand this phenomenon, we defined the lettuce bolting starting period, and the high temperature (33 °C) and controlled temperature (20 °C) induced bolting starting phase of proteomics is analyzed, based on the iTRAQ-based proteomics, phenotypic measurement, and biological validation by RT-qPCR. Morphological and microscopic observation showed that the initiation of bolting occurred 8 days after high-temperature treatment. Fructose accumulated rapidly after high-temperature treatment. During initiation of bolting, of the 3305 identified proteins, a total of 93 proteins exhibited differential abundances, 38 of which were upregulated and 55 downregulated. Approximately 38% of the proteins were involved in metabolic pathways and were clustered mainly in energy metabolism and protein synthesis. Furthermore, some proteins involved in sugar synthesis were differentially expressed and were also associated with energy production. Conclusions This report is the first to report on the metabolic changes involved in the initiation of bolting in lettuce. Our study suggested that energy metabolism and ribosomal proteins are pivotal components during initiation of bolting. This study could provide a potential regulatory mechanism for the initiation of early bolting by high temperature, which could have applications in the manipulation of lettuce for breeding.


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2535
Author(s):  
Jose Lucas Peñalver-Soto ◽  
Alberto Garre ◽  
Arantxa Aznar ◽  
Pablo S. Fernández ◽  
Jose A. Egea

In food processes, optimizing processing parameters is crucial to ensure food safety, maximize food quality, and minimize the formation of potentially toxigenic compounds. This research focuses on the simultaneous impacts that severe heat treatments applied to food may have on the formation of harmful chemicals and on microbiological safety. The case studies analysed consider the appearance/synthesis of acrylamide after a sterilization heat treatment for two different foods: pureed potato and prune juice, using Geobacillus stearothermophilus as an indicator. It presents two contradictory situations: on the one hand, the application of a high-temperature treatment to a low acid food with G. stearothermophilus spores causes their inactivation, reaching food safety and stability from a microbiological point of view. On the other hand, high temperatures favour the appearance of acrylamide. In this way, the two objectives (microbiological safety and acrylamide production) are opposed. In this work, we analyse the effects of high-temperature thermal treatments (isothermal conditions between 120 and 135 °C) in food from two perspectives: microbiological safety/stability and acrylamide production. After analysing both objectives simultaneously, it is concluded that, contrary to what is expected, heat treatments at higher temperatures result in lower acrylamide production for the same level of microbial inactivation. This is due to the different dynamics and sensitivities of the processes at high temperatures. These results, as well as the presented methodology, can be a basis of analysis for decision makers to design heat treatments that ensure food safety while minimizing the amount of acrylamide (or other harmful substances) produced.


2018 ◽  
Author(s):  
Jinxin Li ◽  
Tingting Mao ◽  
Zhengting Lu ◽  
Mengxue Li ◽  
Zhengting Lu ◽  
...  

AbstractThe global warming has affected the growth, development and reproduction of insects. However, the molecular mechanism of high temperature stress-mediated metamorphosis regulation of lepidopteran insect has not been elucidated. In this study, the relationship between the insect developmental process and endogenous hormone level was investigated under high temperature (36 ° C) stress in Bombyx mori (B. mori). The results showed that the duration of 5th instar larvae were shortened by 28 ± 2 h, and the content of 20E was up-regulated significantly after 72 h of high temperature treatment, while the transcription levels of 20E response genes E93, Br-C, USP, E75 were up-regulated 1.35, 1.25, 1.28, and 1.27-fold, respectively. The high temperature treatment promoted the phosphorylation level of Akt and the downstream BmCncC/keap1 pathway was activated, the transcription levels of 20E synthesis-related genes cyp302a1, cyp306a1, cyp314a1 and cyp315a1 were up-regulated by 1.12, 1.51, 2.17 and 1.23-fold, respectively. After treatment with double stranded RNA of BmCncC (dsBmCncC) in BmN cells, the transcription levels of cyp302a1 and cyp306a1 were significantly decreased, whereas up-regulated by 2.15 and 1.31-fold, respectively, after treatment with CncC activator Curcumin. These results suggested that BmCncC/keap1-mediated P450 genes (cyp302a1, cyp306a1) expression resulted in the changes of endogenous hormone level, which played an important role in the regulation of metamorphosis under high temperature stress. Studies provide novel clues for understanding the CncC/keap1 pathway-mediated metamorphosis regulation mechanism in insects.Author SummaryMammalian nuclear transcription factor Nrf2 (NF-E2-related factor 2) plays an important role in the stress response of cells. CncC is a homolog of mammalian Nrf2 in insect, regulating the genes expression of insect antioxidant enzymes and cytochrome P450 detoxification enzyme. Evidence suggests that the CncC/Keap1 pathway also plays an important role in regulating insect development. Here, we investigated the regulatory mechanism between the CncC/Keap1 pathway and metabolism of silkworm hormones in Lepidoptera. We found that high temperature induction accelerated the development of silkworm, the ecdysone content and related metabolic genes in hemolymph were significantly up-regulated, the CncC/Keap1 pathway was activated, and the expression of BmCncC was significantly increased, indicating that the Cncc/Keap1 pathway plays an important role in this process. The expression of cyp302a1 and cyp306a1 was significantly decreased by RNA interference with BmCncC, which indicated that CncC in silkworm had a regulatory relationship with downstream 20E synthetic gene. In summary, the results indicate that the CncC/Keap1 pathway plays an important role in regulating hormone metabolism in silkworm, providing a basis for further study of the relationship between CncC/Keap1 pathway and development in insects.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jae-Ryoung Park ◽  
Eun-Gyeong Kim ◽  
Yoon-Hee Jang ◽  
Kyung-Min Kim

Abstract Background Recent temperature increases due to rapid climate change have negatively affected rice yield and grain quality. Particularly, high temperatures during right after the flowering stage reduce spikelet fertility, while interfering with sugar energy transport, and cause severe damage to grain quality by forming chalkiness grains. The effect of high-temperature on spikelet fertility and grain quality during grain filling stage was evaluated using a double haploid line derived from another culture of F1 by crossing Cheongcheong and Nagdong cultivars. Quantitative trait locus (QTL) mapping identifies candidate genes significantly associated with spikelet fertility and grain quality at high temperatures. Results Our analysis screened OsSFq3 that contributes to spikelet fertility and grain quality at high-temperature. OsSFq3 was fine-mapped in the region RM15749-RM15689 on chromosome 3, wherein four candidate genes related to the synthesis and decomposition of amylose, a starch component, were predicted. Four major candidate genes, including OsSFq3, and 10 different genes involved in the synthesis and decomposition of amylose and amylopectin, which are starch constituents, together with relative expression levels were analyzed. OsSFq3 was highly expressed during the initial stage of high-temperature treatment. It exhibited high homology with FLOURY ENDOSPERM 6 in Gramineae plants and is therefore expected to function similarly. Conclusion The QTL, major candidate genes, and OsSFq3 identified herein could be effectively used in breeding rice varieties to improve grain quality, while tolerating high temperatures, to cope with climate changes. Furthermore, linked markers can aid in marker-assisted selection of high-quality and -yield rice varieties tolerant to high temperatures.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zolian Zoong Lwe ◽  
Saroj Sah ◽  
Leelawatti Persaud ◽  
Jiaxu Li ◽  
Wei Gao ◽  
...  

Abstract Background Brassica carinata (A) Braun has recently gained increased attention across the world as a sustainable biofuel crop. B. carinata is grown as a summer crop in many regions where high temperature is a significant stress during the growing season. However, little research has been conducted to understand the mechanisms through which this crop responds to high temperatures. Understanding traits that improve the high-temperature adaption of this crop is essential for developing heat-tolerant varieties. This study investigated lipid remodeling in B. carinata in response to high-temperature stress. A commercial cultivar, Avanza 641, was grown under sunlit-controlled environmental conditions in Soil-Plant-Atmosphere-Research (SPAR) chambers under optimal temperature (OT; 23/15°C) conditions. At eight days after sowing, plants were exposed to one of the three temperature treatments [OT, high-temperature treatment-1 (HT-1; 33/25°C), and high-temperature treatment-2 (HT-2; 38/30°C)]. The temperature treatment period lasted until the final harvest at 84 days after sowing. Leaf samples were collected at 74 days after sowing to profile lipids using electrospray-ionization triple quadrupole mass spectrometry. Results Temperature treatment significantly affected the growth and development of Avanza 641. Both high-temperature treatments caused alterations in the leaf lipidome. The alterations were primarily manifested in terms of decreases in unsaturation levels of membrane lipids, which was a cumulative effect of lipid remodeling. The decline in unsaturation index was driven by (a) decreases in lipids that contain the highly unsaturated linolenic (18:3) acid and (b) increases in lipids containing less unsaturated fatty acids such as oleic (18:1) and linoleic (18:2) acids and/or saturated fatty acids such as palmitic (16:0) acid. A third mechanism that likely contributed to lowering unsaturation levels, particularly for chloroplast membrane lipids, is a shift toward lipids made by the eukaryotic pathway and the channeling of eukaryotic pathway-derived glycerolipids that are composed of less unsaturated fatty acids into chloroplasts. Conclusions The lipid alterations appear to be acclimation mechanisms to maintain optimal membrane fluidity under high-temperature conditions. The lipid-related mechanisms contributing to heat stress response as identified in this study could be utilized to develop biomarkers for heat tolerance and ultimately heat-tolerant varieties.


2018 ◽  
Vol 45 (9) ◽  
pp. 911 ◽  
Author(s):  
She Tang ◽  
Haixiang Zhang ◽  
Ling Li ◽  
Xia Liu ◽  
Lin Chen ◽  
...  

High temperature has adverse effects on rice growth by inhibiting the flag leaf photosynthetic and antioxidant capacity, which can be alleviated by various exogenous chemicals such as spermidine (Spd). However, the role of Spd in conferring heat tolerance in rice is not well documented. Conventional japonica rice varieties Wuyunjing 24 and Ningjing 3 were treated with high temperatures at 37.5/27.0°C (day/night) and foliar sprayed with 1 mmol L−1 Spd after flowering. Results showed activities of superoxide dismutase (SOD) and peroxidase (POD) activities were deceased during high temperature treatment and eventually lead to the malondialdehyde (MDA) accumulation. Exogenous Spd significantly increased both SOD and POD activities at the later stage of high-temperature treatment, and reduced MDA accumulation were identified in both rice varieties. Application of Spd further increased the amount of soluble sugars during high temperature stress and that maintained the osmotic equilibrium of rice leaves. Spd significantly increased photosystem II (ΦPSII), photosynthetic electron transport rate (ETR), variable fluorescence/maximum fluorescence ratio (Fvʹ/Fmʹ), stomatal conductance and the photochemical reaction of light energy ratio (Pr), and ultimately improved the photosynthetic and transpiration rate during high temperature stress. In conclusion, exogenous Spd can effectively alleviate the adverse consequences of high temperature and could be further applied to provide strategies in mitigating the challenges of global warming-induced yield loss and other possible relevant issues.


2006 ◽  
Vol 33 (10) ◽  
pp. 931 ◽  
Author(s):  
Violeta Velikova ◽  
Francesco Loreto ◽  
Tsonko Tsonev ◽  
Federico Brilli ◽  
Aglika Edreva

The phenomenon of enhanced plant thermotolerance by isoprene was studied in leaves of the same age of 1- or 2-year-old Platanus orientalis plants. Our goals were to determine whether the isoprene emission depends on the age of the plant, and whether different emission rates can influence heat resistance in plants of different age. Two-year-old plants emit greater amounts of isoprene and possess better capacity to cope with heat stress than 1-year-old plants. After a high temperature treatment (38°C for 4 h), photosynthetic activity, hydrogen peroxide content, lipid peroxidation and antiradical activity were preserved in isoprene emitting leaves of 1- and 2-year-old plants. However, heat inhibited photosynthesis and PSII efficiency, caused accumulation of H2O2, and increased all indices of membrane damage and antioxidant capacity in leaves of plants of both ages in which isoprene was inhibited by fosmidomycin. In isoprene-inhibited leaves fumigated with exogenous isoprene during the heat treatment, the negative effects on photosynthetic capacity were reduced. These results further support the notion that isoprene plays an important role in protecting photosynthesis against damage at high temperature. It is suggested that isoprene is an important compound of the non-enzymatic defence of plants against thermal stress, possibly contributing to scavenging of reactive oxygen species (ROS) and membrane stabilising capacity, especially in developed plants.


2015 ◽  
Vol 732 ◽  
pp. 111-114 ◽  
Author(s):  
Marcel Jogl ◽  
Pavel Reiterman ◽  
Ondřej Holčapek ◽  
Jaroslava Koťátková

Article presents the results of an experimental program aimed at investigating of the mechanical properties of composites based on aluminous cement with the addition of basalt fibres, which could be used in the manufacture of components resistant to high temperatures, including the retention of mechanical properties. Silica composites based on Portland cement and silica aggregates are not able to resist the effects of high temperatures [1], therefore a heat resistant mixtures in this experiment includes only components that are able to resist the effects of high temperatures.


Sign in / Sign up

Export Citation Format

Share Document