scholarly journals Bioinformatics analysis of mRNA and miRNA microarray to identify the key miRNA-mRNA pairs in cisplatin-resistant ovarian cancer

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Bai Xue ◽  
Shupeng Li ◽  
Xianyu Jin ◽  
Lifeng Liu

Abstract Background Ovarian cancer (OC) is a gynecological malignancy with the highest mortality rate. Cisplatin (DDP) based chemotherapy is a standard strategy for ovarian cancer. Despite good response rates for initial chemotherapy, almost 80% of the patients treated with DDP based chemotherapy will experience recurrence due to drug-resistant, which will ultimately result in fatality. The aim of the present study was to examine the pathogenesis and potential molecular markers of cisplatin-resistant OC by studying the differential expression of mRNAs and miRNAs between cisplatin resistant OC cell lines and normal cell lines. Methods Two mRNA datasets (GSE58470 and GSE45553) and two miRNA sequence datasets (GSE58469 and GSE148251) were downloaded from the Gene expression omnibus (GEO) database. Differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) were screened by the NetworkAnalyst. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted to analyze the biological functions of DEGs. The protein-protein interaction network was constructed using STRING and Cytoscape software to identify the molecular mechanisms of key signaling pathways and cellular activities. FunRich and MiRNATip databases were used to identify the target genes of the DEMs. Results A total of 380 DEGs, and 5 DEMs were identified. Protein–protein interaction (PPI) network of DEGs containing 379 nodes and 1049 edges was constructed, and 4 key modules and 24 hub genes related to cisplatin-resistant OC were screened. Two hundred ninety-nine target genes of the 5 DEMs were found out. Subsequently, one of these 299 target genes (UBB) belonging to the hub genes of GSE58470 and GSE45553 was identified by MCODE and CytoHubba,which was regulated by one miRNA (mir-454). Conclusions One miRNA–mRNA regulatory pairs (mir-454-UBB) was established. Taken together, our study provided evidence concerning the alteration genes involved in cisplatin-resistant OC, which will help to unravel the mechanisms underlying drug resistant.

2020 ◽  
Author(s):  
Manisha Mandal ◽  
Shyamapada Mandal

Abstract The potential biomarkers in inflammatory bowel diseases (IBDs) were analyzed from GSE53867 dataset. Differentially expressed microRNAs (DEMs)-genes and protein-protein interaction networks were constructed, and hub genes selected using Cytoscape. Differentially expressed genes were analyzed for GO and Reactome-pathway. Seven DEMs were upregulated in Crohn's disease (CD), 4 downregulated in ulcerative colitis (UC), 8 upregulated and 2 downregulated in IBD. A 620, 2377, and 1821 target-genes were in CD, UC, and IBD, respectively. SOCS3, upregulated by miR-650, was hub gene in CD, induced by cytokines, through NFKB-signalling pathway to mediate ubiquitin-proteasomal degradation. CIRH1A, downregulated by miR-16, was hub gene of UC, acted by impairing ribosome-biogenesis. SKP2 and ASB1, up- and downregulated, by miR-142 and miR-665, respectively, were hub genes of IBD, induced cytokines through activation of TLR- and TNF-signalling pathways to mediate ubiquitin-proteasomal degradation. SOCS3, CIRH1A, SKP2 and ASB1 genes might serve as valuable biomarkers to differentiate CD, UC and IBD.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248941
Author(s):  
Mona Al-Mugotir ◽  
Jeffrey J. Lovelace ◽  
Joseph George ◽  
Mika Bessho ◽  
Dhananjaya Pal ◽  
...  

Synthetic lethality is a successful strategy employed to develop selective chemotherapeutics against cancer cells. Inactivation of RAD52 is synthetically lethal to homologous recombination (HR) deficient cancer cell lines. Replication protein A (RPA) recruits RAD52 to repair sites, and the formation of this protein-protein complex is critical for RAD52 activity. To discover small molecules that inhibit the RPA:RAD52 protein-protein interaction (PPI), we screened chemical libraries with our newly developed Fluorescence-based protein-protein Interaction Assay (FluorIA). Eleven compounds were identified, including FDA-approved drugs (quinacrine, mitoxantrone, and doxorubicin). The FluorIA was used to rank the compounds by their ability to inhibit the RPA:RAD52 PPI and showed mitoxantrone and doxorubicin to be the most effective. Initial studies using the three FDA-approved drugs showed selective killing of BRCA1-mutated breast cancer cells (HCC1937), BRCA2-mutated ovarian cancer cells (PE01), and BRCA1-mutated ovarian cancer cells (UWB1.289). It was noteworthy that selective killing was seen in cells known to be resistant to PARP inhibitors (HCC1937 and UWB1 SYr13). A cell-based double-strand break (DSB) repair assay indicated that mitoxantrone significantly suppressed RAD52-dependent single-strand annealing (SSA) and mitoxantrone treatment disrupted the RPA:RAD52 PPI in cells. Furthermore, mitoxantrone reduced radiation-induced foci-formation of RAD52 with no significant activity against RAD51 foci formation. The results indicate that the RPA:RAD52 PPI could be a therapeutic target for HR-deficient cancers. These data also suggest that RAD52 is one of the targets of mitoxantrone and related compounds.


2021 ◽  
Author(s):  
Yuxuan HUANG ◽  
Ge CUI

Abstract Aims: To utilize the bioinformatics to analyze the differentially expressed genes (DEGs), interaction proteins, perform gene enrichment analysis, protein-protein interaction network (PPI) and map the hub genes between colorectal cancer(CRC) and colorectal adenocarcinomas(CA).Methods: We analyzed a microarray dataset (GSE32323 and GSE4183) from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) in tumor tissues and non-cancerous tissues were identified using the dplyr and Venn diagram packages of the R Studio software. Functional annotation of the DEGs was performed using the Gene Ontology (GO) website. Pathway enrichment (KEGG) used the WebGestalt to analyze the data and R Studio to generate the graph. We constructed a protein–protein interaction (PPI) network of DEGs using STRING and Cytoscape software was used for visualization. Survival analysis of the hub genes and was performed using the online platform GEPIA to determine the prognostic value of the expression of hub genes in cell lines from CRC patients. The expression of molecules with prognostic values was validated on the UALCAN database. The expression of hub genes was examined using the Human Protein Atlas. Results: Applying the GEO2R analysis and R studio, we identified a total of 471 upregulated and 278 downregulated DEGs. By using the online database WebGestalt, we identified the most relevant biological networks involving DEGs with statistically significant differences in expression were mainly associated with biological processes involved in the cell proliferation, cell cycle transition, cell homeostasis and indicated the role of each DEGs in cell cycle regulation pathways. We found 10 hub genes with prognostic values were overexpressed in the CRC and CA samples.Conclusion: we found out ten hub genes and three core genes closely associated with the pathogenesis and prognosis of CRC and CA, which is of great significance for colorectal tumor early detection and prognosis evaluation.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Ke-Ying Fang ◽  
Wen-Chao Cao ◽  
Tian-Ao Xie ◽  
Jie Lv ◽  
Jia-Xin Chen ◽  
...  

Abstract Background In the novel coronavirus pandemic, the high infection rate and high mortality have seriously affected people’s health and social order. To better explore the infection mechanism and treatment, the three-dimensional structure of human bronchus has been employed in a better in-depth study on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Methods We downloaded a separate microarray from the Integrated Gene Expression System (GEO) on a human bronchial organoids sample to identify differentially expressed genes (DEGS) and analyzed it with R software. After processing with R software, Gene Ontology (GO) and Kyoto PBMCs of Genes and Genomes (KEGG) were analyzed, while a protein–protein interaction (PPI) network was constructed to show the interactions and influence relationships between these differential genes. Finally, the selected highly connected genes, which are called hub genes, were verified in CytoHubba plug-in. Results In this study, a total of 966 differentially expressed genes, including 490 upregulated genes and 476 downregulated genes were used. Analysis of GO and KEGG revealed that these differentially expressed genes were significantly enriched in pathways related to immune response and cytokines. We construct protein-protein interaction network and identify 10 hub genes, including IL6, MMP9, IL1B, CXCL8, ICAM1, FGF2, EGF, CXCL10, CCL2, CCL5, CXCL1, and FN1. Finally, with the help of GSE150728, we verified that CXCl1, CXCL8, CXCL10, CCL5, EGF differently expressed before and after SARS-CoV-2 infection in clinical patients. Conclusions In this study, we used mRNA expression data from GSE150819 to preliminarily confirm the feasibility of hBO as an in vitro model to further study the pathogenesis and potential treatment of COVID-19. Moreover, based on the mRNA differentiated expression of this model, we found that CXCL8, CXCL10, and EGF are hub genes in the process of SARS-COV-2 infection, and we emphasized their key roles in SARS-CoV-2 infection. And we also suggested that further study of these hub genes may be beneficial to treatment, prognostic prediction of COVID-19.


Author(s):  
Enrica Vescarelli ◽  
Giulia Gerini ◽  
Francesca Megiorni ◽  
Eleni Anastasiadou ◽  
Paola Pontecorvi ◽  
...  

Abstract Background Ovarian cancer (OC) is the most lethal gynecological malignancy and the second leading cause of cancer-related death in women. Treatment with PARP inhibitors (PARPi), such as Olaparib, has been recently introduced for OC patients, but resistance may occur and underlying mechanisms are still poorly understood. The aim of this study is to identify target genes within the tumor cells that might cause resistance to Olaparib. We focused on Neuropilin 1 (NRP1), a transmembrane receptor expressed in OC and correlated with poor survival, which has been also proposed as a key molecule in OC multidrug resistance. Methods Using three OC cell lines (UWB, UWB-BRCA and SKOV3) as model systems, we evaluated the biological and molecular effects of Olaparib on OC cell growth, cell cycle, DNA damage and apoptosis/autophagy induction, through MTT and colony forming assays, flow cytometry, immunofluorescence and Western blot analyses. We evaluated NRP1 expression in OC specimens and cell lines by Western blot and qRT-PCR, and used RNA interference to selectively inhibit NRP1. To identify miR-200c as a regulator of NRP1, we used miRNA target prediction algorithms and Pearsons’ correlation analysis in biopsies from OC patients. Then, we used a stable transfection approach to overexpress miR-200c in Olaparib-resistant cells. Results We observed that NRP1 is expressed at high levels in resistant cells (SKOV3) and is upmodulated in partially sensitive cells (UWB-BRCA) upon prolonged Olaparib treatment, leading to poor drug response. Our results show that the selective inhibition of NRP1 is able to overcome Olaparib resistance in SKOV3 cells. Moreover, we demonstrated that miR-200c can target NRP1 in OC cells, causing its downmodulation, and that miR-200c overexpression is a valid approach to restore Olaparib sensitivity in OC resistant cells. Conclusions These data demonstrate that miR-200c significantly enhanced the anti-cancer efficacy of Olaparib in drug-resistant OC cells. Thus, the combination of Olaparib with miRNA-based therapy may represent a promising treatment for drug resistant OC, and our data may help in designing novel precision medicine trials for optimizing the clinical use of PARPi.


2020 ◽  
Author(s):  
Weijia Lu ◽  
Yunyu Wu ◽  
CanXiong Lu ◽  
Ting Zhu ◽  
ZhongLu Ren ◽  
...  

Abstract Objective MicroRNAs (MiRNAs) is considered to play an important role in the occurrence and development of ovarian cancer(OC). Although miRNAs has been widely recognized in ovarian cancer, the role of hsa-miR-30a-5p (miR-30a) in OC has not been fully elucidated. Methods Through the analysis of public data sets in Gene Expression Omnibus (GEO) database and literature review, the significance of miR-30a expression in OC is evaluated. Three mRNA datasets of OC and normal ovarian tissue, GSE14407, GSE18520 and GSE36668, were downloaded from GEO to find the differentially expressed gene (DEG). Then the target genes of hsa-miR-30a-5p were predicted by miRWALK3.0 and TargetScan. Then, the gene overlap between DEG and the predicted target genes of miR-30a in OC was analyzed by Gene Ontology (GO) enrichment analysis. Protein-protein interaction (PPI) network was constructed by STRING and Cytoscape, and the effect of HUB gene on the prognosis of OC was analyzed. Results A common pattern of up-regulation of miR-30a in OC was found. A total of 225 DEG, were identified, both OC-related and miR-30a-related. Many DEG are enriched in the interactions of intracellular matrix tissue, ion binding and biological process regulation. Among the 10 major Hub genes analyzed by PPI, five Hub genes were significantly related to the overall poor survival of OC patients, in which the low expression of ESR1 ,MAPK10, Tp53 and the high expression of YKT ,NSF were related to poor prognosis of OC.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Binfeng Liu ◽  
Ang Li ◽  
Hongbo Wang ◽  
Jialin Wang ◽  
Gongwei Zhai ◽  
...  

The Corneal wound healing results in the formation of opaque corneal scar. In fact, millions of people around the world suffer from corneal scars, leading to loss of vision. This study aimed to identify the key changes of gene expression in the formation of opaque corneal scar and provided potential biomarker candidates for clinical treatment and drug target discovery. We downloaded Gene expression dataset GSE6676 from NCBI-GEO, and analyzed the Differentially Expressed Genes (DEGs), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment pathway analyses, and protein-protein interaction (PPI) network. A total of 1377 differentially expressed genes were identified and the result of Functional enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) identification and protein-protein interaction (PPI) networks were performed. In total, 7 hub genes IL6 (interleukin-6), MMP9 (matrix metallopeptidase 9), CXCL10 (C-X-C motif chemokine ligand 10), MAPK8 (mitogen-activated protein kinase 8), TLR4 (toll-like receptor 4), HGF (hepatocyte growth factor), EDN1 (endothelin 1) were selected. In conclusion, the DEGS, Hub genes and signal pathways identified in this study can help us understand the molecular mechanism of corneal scar formation and provide candidate targets for the diagnosis and treatment of corneal scar.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Alexandra B. Bentz ◽  
Chad E. Niederhuth ◽  
Laura L. Carruth ◽  
Kristen J. Navara

Abstract Background Maternal hormones, like testosterone, can strongly influence developing offspring, even generating long-term organizational effects on adult behavior; yet, the mechanisms facilitating these effects are still unclear. Here, we experimentally elevated prenatal testosterone in the eggs of zebra finches (Taeniopygia guttata) and measured male aggression in adulthood along with patterns of neural gene expression (RNA-seq) and DNA methylation (MethylC-Seq) in two socially relevant brain regions (hypothalamus and nucleus taenia of the amygdala). We used enrichment analyses and protein-protein interaction networks to find candidate processes and hub genes potentially affected by the treatment. We additionally identified differentially expressed genes that contained differentially methylated regions. Results We found that males from testosterone-injected eggs displayed more aggressive behaviors compared to males from control eggs. Hundreds of genes were differentially expressed, particularly in the hypothalamus, including potential aggression-related hub genes (e.g., brain derived neurotrophic factor). There were also enriched processes with well-established links to aggressive phenotypes (e.g., somatostatin and glutamate signaling). Furthermore, several highly connected genes identified in protein-protein interaction networks also showed differential methylation, including adenylate cyclase 2 and proprotein convertase 2. Conclusions These results highlight genes and processes that may play an important role in mediating the effects of prenatal testosterone on long-term phenotypic outcomes, thereby providing insights into the molecular mechanisms that facilitate hormone-mediated maternal effects.


2020 ◽  
Author(s):  
Jiayao Zhu ◽  
Yan Zhang ◽  
Jingjing Lu ◽  
Le Wang ◽  
Xiaoren Zhu ◽  
...  

Abstract Background: lung adenocarcinoma is the main subtype of lung cancer and the most fatal malignant disease in the world. However, the pathogenesis of lung adenocarcinoma has not been fully elucidated.Methods: Three LUAD-associated datesets (GSE118370, GSE43767 and GSE74190) were downloaded from the Gene Expression Omnibus (GEO) datebase and the differentially expressed miRNAs (DEMs) and genes (DEGs) were screened by GEO2R. The prediction of target gene of differentially expressed miRNA were used miRWALK. Metascape was used to enrich the overlapped genes of DEGs and target genes. Then, the protein-protein interaction(PPI) and DEMs-DEGs regulatory network were created via String datebase and Cytoscape. Finally, overall survival analysis was established via the Kaplan–Meier curve and look for the possible prognostic biomarkers.Result: In this study, 433 differential genes were identified. There were 267 genes overlapped with the target gene of Dems, and eight hub genes (CDH1, CDH5, CAV1, MMP9, PECAM1, CD24, ENG, MME) were screened out. There were 85 different miRNAs in total, among which 16 miRNA target genes intersect with DEGs, 12 miRNAs with the highest interaction were screened out, and survival analysis of miRNA and hub genes was carried out.Conclusion: we found that miRNA-940, miRNA-125a-3p, miRNA-140-3p, miRNA-542-5p, CDH1, CDH5, CAV1, MMP9, PECAM1 may be related to the development of LUAD.


2021 ◽  
Author(s):  
chanyuan li ◽  
Ting Wan ◽  
Ting Deng ◽  
Junya Cao ◽  
He Huang ◽  
...  

Abstract Background: Epithelial ovarian cancer is nowadays one of the malignancies in women, this study aimed to identify novel biomarkers to predict prognosis and immunotherapy efficacy.Methods: The differentially expressed genes (DEGs) obtained from online database Gene Expression Omnibus (GEO)were screened via GEO2R and Venn diagram software, gene enrichment was analysed by Gene Ontology(GO) function and Kyoto Encyclopedia of Genes and Genomes(KEGG), then protein protein interaction(PPI)network and Cytoscape software were used to confirm the genes closely related to ovarian cancer. Survival analysis of hub genes were obtained from Kaplan–Meier plotter, with their differential expression in specimen validated by Gene Expression Profiling Interactive Analysis (GEPIA) and an integrated repository portal for tumor-immune system interactions (TISIDB). Finally, we used the Tumor Immune Estimation Resource 2.0 (TIMER2.0) and application Estimate the Proportion of Immune and Cancer cells (EPIC) to search the immune infiltration characteristics of the genes.Results: 355 DEGs between epithelial ovarian cancer and normal ovarian tissue were screened out. These DEGs were associated with extracellular exosome, bicellular tight junction and cell-cell junction, and remarkably enriched in molecules of cell adhesion and leukocyte transendothelial migration activity. Ten hub genes were identified via protein protein interaction (PPI) network: PTAFR, HLA-DRA, OAS2, OAS3, PTPN6, LYN, VAMP8, IRF6, ITGB2, CD47. Furthermore, the Kaplan–Meier plotter was conducted, overexpression of four genes was positively connected to poor prognosis in ovarian cancer:OAS2, OAS3, ITGB2, CD47,which were also correlated with immune infiltrates in ovarian cancer and had the highest degree of correlation with tumor associated macrophages (TAMs) infiltration, among which ITGB2 was highly correlated with TAMs infiltration level.Conclusion: ITGB2, OAS2, OAS3, and CD47 are upregulated with unfavorable prognosis in ovarian cancer, and ITGB2 may act as a novel prognostic biomarker with immune infiltration values.


Sign in / Sign up

Export Citation Format

Share Document