scholarly journals MiR-200c sensitizes Olaparib-resistant ovarian cancer cells by targeting Neuropilin 1

Author(s):  
Enrica Vescarelli ◽  
Giulia Gerini ◽  
Francesca Megiorni ◽  
Eleni Anastasiadou ◽  
Paola Pontecorvi ◽  
...  

Abstract Background Ovarian cancer (OC) is the most lethal gynecological malignancy and the second leading cause of cancer-related death in women. Treatment with PARP inhibitors (PARPi), such as Olaparib, has been recently introduced for OC patients, but resistance may occur and underlying mechanisms are still poorly understood. The aim of this study is to identify target genes within the tumor cells that might cause resistance to Olaparib. We focused on Neuropilin 1 (NRP1), a transmembrane receptor expressed in OC and correlated with poor survival, which has been also proposed as a key molecule in OC multidrug resistance. Methods Using three OC cell lines (UWB, UWB-BRCA and SKOV3) as model systems, we evaluated the biological and molecular effects of Olaparib on OC cell growth, cell cycle, DNA damage and apoptosis/autophagy induction, through MTT and colony forming assays, flow cytometry, immunofluorescence and Western blot analyses. We evaluated NRP1 expression in OC specimens and cell lines by Western blot and qRT-PCR, and used RNA interference to selectively inhibit NRP1. To identify miR-200c as a regulator of NRP1, we used miRNA target prediction algorithms and Pearsons’ correlation analysis in biopsies from OC patients. Then, we used a stable transfection approach to overexpress miR-200c in Olaparib-resistant cells. Results We observed that NRP1 is expressed at high levels in resistant cells (SKOV3) and is upmodulated in partially sensitive cells (UWB-BRCA) upon prolonged Olaparib treatment, leading to poor drug response. Our results show that the selective inhibition of NRP1 is able to overcome Olaparib resistance in SKOV3 cells. Moreover, we demonstrated that miR-200c can target NRP1 in OC cells, causing its downmodulation, and that miR-200c overexpression is a valid approach to restore Olaparib sensitivity in OC resistant cells. Conclusions These data demonstrate that miR-200c significantly enhanced the anti-cancer efficacy of Olaparib in drug-resistant OC cells. Thus, the combination of Olaparib with miRNA-based therapy may represent a promising treatment for drug resistant OC, and our data may help in designing novel precision medicine trials for optimizing the clinical use of PARPi.

Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 519
Author(s):  
Eleni Anastasiadou ◽  
Elena Messina ◽  
Tiziana Sanavia ◽  
Lucia Mundo ◽  
Federica Farinella ◽  
...  

Conventional/targeted chemotherapies and ionizing radiation (IR) are being used both as monotherapies and in combination for the treatment of epithelial ovarian cancer (EOC). Several studies show that these therapies might favor oncogenic signaling and impede anti-tumor responses. MiR-200c is considered a master regulator of EOC-related oncogenes. In this study, we sought to investigate if chemotherapy and IR could influence the expression of miR-200c-3p and its target genes, like the immune checkpoint PD-L1 and other oncogenes in a cohort of EOC patients’ biopsies. Indeed, PD-L1 expression was induced, while miR-200c-3p was significantly reduced in these biopsies post-therapy. The effect of miR-200c-3p target genes was assessed in miR-200c transfected SKOV3 cells untreated and treated with olaparib and IR alone. Under all experimental conditions, miR-200c-3p concomitantly reduced PD-L1, c-Myc and β-catenin expression and sensitized ovarian cancer cells to olaparib and irradiation. In silico analyses further confirmed the anti-correlation between miR-200c-3p with c-Myc and β-catenin in 46 OC cell lines and showed that a higher miR-200c-3p expression associates with a less tumorigenic microenvironment. These findings provide new insights into how miR-200c-3p could be used to hold in check the adverse effects of conventional chemotherapy, targeted therapy and radiation therapy, and offer a novel therapeutic strategy for EOC.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yaqing Zhang ◽  
Hongyun Gan ◽  
Fei Zhao ◽  
Xiaomei Ma ◽  
Xiaofeng Xie ◽  
...  

Background: Drug resistance is a major obstacle in chemotherapy for ovarian cancer, wherein the up regulation of drug-resistant genes plays an important role. The cytoplasmic polyadenylation element binding protein 4 (CPEB4) is an RNA binding protein that controls mRNA cytoplasmic polyadenylation and translation.Methods: The expression of CPEB4 in paclitaxel-resistant ovarian cancer cell lines and recurrent ovarian tumors relative to counterparts was determined by qRT-PCR, Western blotting and immunohistochemistry. The response to paclitaxel treatment was evaluated by cellular viability test and colony formation assay. RNA immunoprecipitation and poly(A) tail test were applied to examine the levels of RNA binding and cytoplasmic polyadenylation.Results: CPEB4 is elevated in paclitaxel-resistant ovarian cancer cells and recurrent ovarian tumors treated with paclitaxel-based chemotherapy. In addition, CPEB4 overexpression promotes paclitaxel resistance in ovarian cancer cells in vitro, and vice versa, CPEB4 knockdown restores paclitaxel sensitivity, indicating that CPEB4 confers paclitaxel resistance in ovarian cancer cells. Mechanistically, CPEB4 binds with the taxol (paclitaxel)-resistance-associated gene-3 (TRAG-3/CSAG2) mRNAs and induces its expression at a translational level. Moreover, CSAG2 expression is upregulated in paclitaxel-resistant ovarian carcinoma and cancer cell lines, and more importantly, siRNA-mediated CSAG2 knockdown overtly attenuates CPEB4-mediated paclitaxel resistance.Conclusion: This study suggests that the drug-resistant protein CSAG2 is translationally induced by CPEB4, which underlies CPEB4-promoted paclitaxel resistance in ovarian cancer in vitro. Thus, interfering CPEB4/CSAG2 axis might be of benefit to overcome paclitaxel-resistant ovarian cancer.


2006 ◽  
Vol 1 ◽  
pp. 117727190600100 ◽  
Author(s):  
Akiko Horiuchi ◽  
Cuiju Wang ◽  
Norihiko Kikuchi ◽  
Ryosuke Osada ◽  
Toshio Nikaido ◽  
...  

BRCA1 is a tumor suppressor which plays a crucial role in the repair of DNA double-strand breaks, and its abnormality is responsible for hereditary ovarian cancer syndrome. It has recently been reported that reduced expression of BRCA1 is also common in sporadic ovarian carcinoma via its promoter hypermethylation, and that ovarian carcinoma patients negative for BRCA1 expression showed favorable prognosis. To address if BRCA1 expression plays a role in the chemotherapeutic response, we analyzed the effect of BRCA1 suppression on the sensitivity to cisplatin and paclitaxel in ovarian cancer cells. Specific siRNA for BRCA1 gene was transfected into 3 ovarian cancer cell lines with various p53 status. Reduced expression of BRCA1 by transfection of BRCA1-siRNA resulted in a 5.3-fold increase in sensitivity to cisplatin in p53-wild A2780 cells, but not in p53-mutated A2780/CDDP and p53-deleted SKOV3 cells. Regarding the sensitivity to paclitaxel, BRCA1 suppression caused no significant changes in all the 3 cell lines. For ionizing radiation sensitivity, BRCA1 suppression also showed a significant higher sensitivity in A2780 cells. Growth curve and cell cycle analyses showed no significant differences between BRCA1-siRNA-transfected A2780 cells and control cells. However, cisplatin treatment under suppression of BRCA1 showed a significantly increased apoptosis along with up-regulation of p53 and p21 in A2780 cells. Accordingly, reduced expression of BRCA1 enhances the cisplatin sensitivity and apoptosis via up-regulation of p53 and p21, but does not affect the paclitaxel sensitivity. Expression of BRCA1 might be an important biomarker for cisplatin resistance in ovarian carcinoma.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Bo Yang ◽  
Li Sun ◽  
Lei Liang

Abstract Background The imbalance of expression of microRNA-802 may have a significant place in tumor progression. However, the bio-function of epithelial ovarian cancer cells remains unclear. Therefore, we setup this study to explore the pathogenesis of epithelial ovarian cancer based on microRNA-802. Methods RT-qPCR analysis was used to measure the expression level of microRNA802 and YWHAZ in epithelial ovarian cancer. CCK-8, colony formation, flow cytometry and transwell assay were used to detect the effects of microRNA-802 on cell proliferation, apoptosis, invasion and migration. Target gene prediction and screening, luciferase reporting experiments were applied to validate the downstream target genes of microRNA-802. The effects of microRNA-802 on the expression of YWHAZ and its biological effects were measured by Western blotting and RT-qPCR. Results Compared with normal cell lines and tissues, the expression level of microRNA-802 was obviously down-regulated in cancer related cell lines and tissues. Overexpression of microRNA-802 could obviously inhibit the invasion and proliferation and induce apoptosis. In addition, YWHAZ was the binding target protein of miR-802 for epithelial ovarian cancer cells. YWHAZ was obviously up-regulated in human epithelial ovarian cancer cells, and YWHAZ was negatively correlated with the expression of miR-802. YWHAZ can partly eliminate the inhibitory effect caused by overexpression of miR-802 on growth and metastasis of epithelial ovarian cancer cells. Conclusion miR-802 can regulate the occurrence and development of epithelial ovarian cancer by targeting YWHAZ.


2011 ◽  
Vol 2011 ◽  
pp. 1-7
Author(s):  
Fang Li ◽  
Sumei Niu ◽  
Jing Sun ◽  
Huaishi Zhu ◽  
Qiujie Ba ◽  
...  

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) presents great promise as an anticancer agent for human cancer therapy. In this study, a magnetofection agent (polyMAG-l000) was evaluated forin vitrodelivery of TRAIL gene towards drug-resistant A2780/DDP ovarian cancer cells. Transfection experiments showed that polyMAG-l000 was able to transfect A2780/DDP cellsin vitro, leading to a higher level of TRAIL gene expression in the presence of a static magnetic field as compared to other transfection agent, such as Lipofectamine 2000. TRAIL gene expression in the A2780/DDP cells was also confirmed by Western blot analysis. Moreover, the TRAIL gene expression exhibited remarkable decrease in the cell viability, as determined by MTT assay. Importantly, PolyMAG-l000-mediated TRAIL gene transfection in the presence of anticancer drug cisplatin (CDDP) induced much higher percentages of apoptotic A2780/DDP cells, compared to TRAIL gene transfection or CDDP treatment alone. A further study by Western blot analysis indicated that cytochromecrelease and caspase-9 cleavage pathway were associated with the initiation of the apoptosis in A2780/DDP cells. The results of this study indicate that polyMAG-l000 can be used as an efficient agent for TRAIL gene transfection in ovarian cancer cells.


2020 ◽  
Author(s):  
Xiaohui Xie ◽  
Juan He ◽  
Yaqiong Liu ◽  
Weiwei Chen ◽  
Kun Shi

Abstract Background: In our previous study, we found Formyl peptide receptor 2 (FPR2) promoted the invasion and metastasis of EOC and it could be a prognostic marker for EOC. In this study, we aimed to study the possible mechanism of FPR2 in promoting EOC progression.Methods: The FPR2 ectopic expression and knockdown EOC cell lines as well as their control cell lines were established and the expression change of RhoA in each cell lines was evaluated by RT-qPCR and Western-blot. Wound healing and Transwell assays were performed to detect the migrational ability of EOCs that affected by FPR2 and RhoA. The supernatant of each EOC cell lines were used to co-culture with the macrophages, and tested the M1 and M2 macrophges biomarkers by flow cytometry. THP-1 cell line was also indcued to differentiated to M1 and M2 macrophages, FPR2 and RhoA expression in each macrophage cell lines were detected by RT-qPCR and Western-blot. Results: RhoA expression was significantly increased in EOCs along with the overexpression of FPR2, which showed a positive correlation by Pearson correlation analysis. FPR2 ectopic expression would contribute to the migrational ability of EOCs, and RhoA inhibitor (C3 transferase) would impare EOCs migration. Furthermore, FPR2 stimulated the secretion of Th2 cytokines by EOCs, which induced macrophages differentiate to M2 phenotype, while RhoA inhibitor stimulate the secretion of Th1 cytokines and induce macrophages differentiate to M1 phenotype. Moreover, compared with M1 macrophages and THP-1 cells, FPR2 and RhoA expression were significantly up-regulated in M2 macrophages.Conclusion: FPR2 stimulated M2 macrophage polarization and promote invasion and metastasis of ovarian cancer cells through RhoA.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Zhang Li ◽  
Wang Yan-qing ◽  
Yang Xiao ◽  
Liu Shi-yi ◽  
Yuan Meng-qin ◽  
...  

Abstract Background Ovarian cancer (OC) has the highest mortality rate in gynecologic tumors. Despite decades of continuous efforts, the survival rate of patients has not improved significantly, mostly due to drug resistance. Exosomes are hot topics in recent years. Cells can affect the biological behaviors of other cells by transferring exosomes. So far, numerous researchers have found that tumor cells can secrete exosomes which play a important role in the development of tumors. Solid tumors can promote angiogenesis. When drug resistance occurs, it seems that more blood vessels form. We suppose that exosomes derived from chemoresistant OC cells can also promote angiogenesis. Results We investigate whether exosomes secreted by chemoresistant SKOV3-DDP cells (SKOV3-DDP-exo) and sensitive SKOV3 cells (SKOV3-exo) influence angiogenesis. After exosomes were extracted, exosomes were co-cultured with HUVECs. We found that SKOV3-DDP-exo and SKOV3-exo are absorbed by endothelial cells and promote the proliferation, migration, invasion and tube formation of endothelial cells. Moreover, SKOV3-DDP-exo is more powerful in angiogenesis, suggesting that parts of the components of SKOV3-DDP-exo are significantly radical. We also found that miR-130a was highly expressed in drug-resistant OC cells. Also, we found that miR-130a in SKOV3-DDP-exo is higher than SKOV3-exo. Therefore, we suggest that miR-130a in exosomes is the main cause of chemoresistant OC cells promoting angiogenesis.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Bai Xue ◽  
Shupeng Li ◽  
Xianyu Jin ◽  
Lifeng Liu

Abstract Background Ovarian cancer (OC) is a gynecological malignancy with the highest mortality rate. Cisplatin (DDP) based chemotherapy is a standard strategy for ovarian cancer. Despite good response rates for initial chemotherapy, almost 80% of the patients treated with DDP based chemotherapy will experience recurrence due to drug-resistant, which will ultimately result in fatality. The aim of the present study was to examine the pathogenesis and potential molecular markers of cisplatin-resistant OC by studying the differential expression of mRNAs and miRNAs between cisplatin resistant OC cell lines and normal cell lines. Methods Two mRNA datasets (GSE58470 and GSE45553) and two miRNA sequence datasets (GSE58469 and GSE148251) were downloaded from the Gene expression omnibus (GEO) database. Differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) were screened by the NetworkAnalyst. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted to analyze the biological functions of DEGs. The protein-protein interaction network was constructed using STRING and Cytoscape software to identify the molecular mechanisms of key signaling pathways and cellular activities. FunRich and MiRNATip databases were used to identify the target genes of the DEMs. Results A total of 380 DEGs, and 5 DEMs were identified. Protein–protein interaction (PPI) network of DEGs containing 379 nodes and 1049 edges was constructed, and 4 key modules and 24 hub genes related to cisplatin-resistant OC were screened. Two hundred ninety-nine target genes of the 5 DEMs were found out. Subsequently, one of these 299 target genes (UBB) belonging to the hub genes of GSE58470 and GSE45553 was identified by MCODE and CytoHubba,which was regulated by one miRNA (mir-454). Conclusions One miRNA–mRNA regulatory pairs (mir-454-UBB) was established. Taken together, our study provided evidence concerning the alteration genes involved in cisplatin-resistant OC, which will help to unravel the mechanisms underlying drug resistant.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3624
Author(s):  
Nada Abdullah ◽  
Yahya Tamimi ◽  
Sergey Dobretsov ◽  
Najwa Al Balushi ◽  
Jalila Alshekaili ◽  
...  

High-grade epithelial ovarian cancer is a fatal disease in women frequently associated with drug resistance and poor outcomes. We previously demonstrated that a marine-derived compound MalforminA1 (MA1) was cytotoxic for the breast cancer cell line MCF-7. In this study, we aimed to examine the effect of MA1 on human ovarian cancer cells. The potential cytotoxicity of MA1was tested on cisplatin-sensitive (A2780S) and cisplatin-resistant (A2780CP) ovarian cancer cell lines using AlamarBlue assay, Hoechst dye, flow cytometry, Western blot, and RT-qPCR. MA1 had higher cytotoxic activity on A2780S (IC50 = 0.23 µM) and A2780CP (IC50 = 0.34 µM) cell lines when compared to cisplatin (IC50 = 31.4 µM and 76.9 µM, respectively). Flow cytometry analysis confirmed the cytotoxic effect of MA1. The synergistic effect of the two drugs was obvious, since only 13% of A2780S and 7% of A2780CP cells remained alive after 24 h of treatment with both MA1 and cisplatin. Moreover, we examined the expression of bcl2, p53, caspase3/9 genes at RNA and protein levels using RT-qPCR and Western blot, respectively, to figure out the cell death mechanism induced by MA1. A significant down-regulation in bcl2 and p53 genes was observed in treated cells compared to non-treated cells (p < 0.05), suggesting that MA1 may not follow the canonical pathway to induce apoptosis in ovarian cancer cell lines. MalforminA1 showed promising anticancer activity by inducing cytotoxicity in cisplatin-sensitive and cisplatin-resistant cancer cell lines. Interestingly, a synergistic effect was observed when MA1 was combined with cisplatin, leading to it overcoming its resistance to cisplatin.


2021 ◽  
Author(s):  
Baoxin Luan ◽  
Hongbo Zhao ◽  
Robert C. Bast ◽  
Zhen Lu ◽  
Yinhua Yu

Abstract Background: Corilagin is a compound with hepatoprotective and antiviral activity extracted from Phyllanthus niruri L. Our previous work demonstrated that corilagin inhibits the growth of ovarian cancer cells by regulating the TGF-β/AKT/ERK signaling. Corilagin was also found to sensitize ovarian cancer cells to paclitaxel and carboplatin by inhibiting the Snail-glycolysis pathway. We have now studied whether corilagin could overcome resistance of ovarian cancer cells to poly ADP ribose polymerase inhibitors (PARPi). PARPi block DNA base excision repair and have been approved for treatment of ovarian cancers. Drug resistance has limited efficacy of PARPi. Methods: We have assessed the effect of corilagin alone and in combination with PARPi in two pairs of ovarian cancer cell lines-A2780CP/A2780CP_R and UWB1.289/UWB1.289_R-that are sensitive or resistant to PARPi. CulcuSyn software (BIOSOFT-Software for Science, Cambridge, U.K.) was used to calculate synergy between two drug combinations. Results: Corilagin was active against all four cell lines and enhanced BMN673 activity synergistically in both PARPi resistant cell lines. PARPi-BMN673 down-regulated the expression levels of PARP and up-regulated pH2AX, it decreased pERK activity in sensitive cell lines, but not in resistant cell lines. While corilagin affected DNA repair function to some extent, it inhibited pERK activity in both PARPi sensitive and resistant cells in a dose dependent manner. Corilagin, but not the BMN673, inhibited ZEB1 in resistant cells. Conclusions: Corilagin deserves further evaluation as a drug that could enhance the activity of PARPi in PARPi-resistant ovarian cancer cells.


Sign in / Sign up

Export Citation Format

Share Document