scholarly journals Classifications of good versus poor outcome following knee arthroplasty should not be defined using arbitrary criteria

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Daniel L. Riddle ◽  
Levent Dumenci

Abstract A recently published paper by te Molder and colleagues in BMC Musculoskeletal Disorders confirmed prior reports indicating that definitions of good versus poor outcome cutoff scores for relevant knee arthroplasty outcomes including pain and function are heterogeneous and that this heterogeneity prevents generalizable inferences. In this Correspondence, we highlight an additional and, in our view, a more important problem with the substantial literature on this topic. There also is high homogeneity in that all studies relied on arbitrarily defined cutoff scores to differentiate good versus poor outcome. We discuss this problem and propose a method to avoid repeating the same problem in future studies designed to group patients into those with good versus those with poor outcome following knee arthroplasty.

2021 ◽  
pp. 1-11
Author(s):  
Danni Li ◽  
Lin Zhang ◽  
Nathaniel W. Nelson ◽  
Michelle M. Mielke ◽  
Fang Yu

Background: Utilities of blood-based biomarkers in Alzheimer’s disease (AD) clinical trials remain unknown. Objective: To evaluate the ability of plasma neurofilament light chain (NfL) to predict future declines in cognition and activities of daily living (ADL) outcomes in 26 older adults with mild-to-moderate AD dementia from the FIT-AD Trial. Methods: Plasma NfL was measured at baseline and 3 and 6 months. Cognition and ADL were assessed using the AD Assessment Scale-Cognition (ADAS-Cog) and AD Uniform Dataset Instruments and Disability Assessment for Dementia (DAD), respectively, at baseline, 3, 6, 9, and 12 months. Linear mixed effects models were used to examine the associations between baseline or change in plasma NfL and changes in outcomes. Results: Higher baseline plasma NfL was associated with greater rate of decline in ADAS-Cog from baseline to 6 months (standardized estimate of 0.00462, p = 0.02853) and in ADL from baseline to 12 months (standardized estimate of –0.00284, p = 0.03338). Greater increase in plasma NfL in short term from baseline to 3 months was associated with greater rate of decline in memory and ADL from 3 to 6 months (standardized estimate of –0.04638 [0.003], p = 0.01635; standardized estimate of –0.03818, p = 0.0435) and greater rate of decline in ADL from 3 to 12 month (standardized estimate of –0.01492, p = 0.01082). Conclusion: This study demonstrated that plasma NfL might have the potential to predict cognitive and function decline up to 12 months. However, future studies with bigger sample sizes need to confirm the findings.


2020 ◽  
Vol 4 (11) ◽  
Author(s):  
Katherine M Ranard ◽  
Matthew J Kuchan ◽  
John W Erdman

ABSTRACT Studying vitamin E [α-tocopherol (α-T)] metabolism and function in the brain and other tissues requires an animal model with low α-T status, such as the transgenic α-T transfer protein (Ttpa)–null (Ttpa−/−) mouse model. Ttpa+/− dams can be used to produce Ttpa−/− and Ttpa+/+mice for these studies. However, the α-T content in Ttpa+/− dams’ diet requires optimization; diets must provide sufficient α-T for reproduction, while minimizing the transfer of α-T to the offspring destined for future studies that require low baseline α-T status. The goal of this work was to assess the effectiveness and feasibility of 2 breeding diet strategies on reproduction outcomes and offspring brain α-T concentrations. These findings will help standardize the breeding methodology used to generate the Ttpa−/− mice for neurological studies.


2021 ◽  
Author(s):  
Jane Hawkey ◽  
Hugh Cottingham ◽  
Alex Tokolyi ◽  
Ryan R Wick ◽  
Louise M Judd ◽  
...  

Linear plasmids are extrachromosomal DNA that have been found in a small number of bacterial species. To date, the only linear plasmids described in the Enterobacteriaceae family belong to Salmonella, first found in Salmonella Typhi. Here, we describe a collection of 12 isolates of the Klebsiella pneumoniae species complex in which we identified linear plasmids. We used this collection to search public sequence databases and discovered an additional 74 linear plasmid sequences in a variety of Enterobacteriaceae species. Gene content analysis divided these plasmids into five distinct phylogroups, with very few genes shared across more than two phylogroups. The majority of linear plasmid-encoded genes are of unknown function, however each phylogroup carried its own unique toxin-antitoxin system and genes with homology to those encoding the ParAB plasmid stability system. Passage in vitro of the 12 linear plasmid-carrying Klebsiella isolates in our collection (which include representatives of all five phylogroups) indicated that these linear plasmids can be stably maintained, and our data suggest they can transmit between K. pneumoniae strains (including members of globally disseminated multidrug resistant clones) and also between diverse Enterobacteriaceae species. The linear plasmid sequences, and representative isolates harbouring them, are made available as a resource to facilitate future studies on the evolution and function of these novel plasmids.


Physiotherapy ◽  
2015 ◽  
Vol 101 ◽  
pp. e532
Author(s):  
A. Alnagmoosh ◽  
A. Harmer ◽  
M. van der Esch ◽  
M. Simic ◽  
M. Fransen

2021 ◽  
Vol 5 (3) ◽  
Author(s):  
Joanna Shim ◽  
David J Mclernon ◽  
David Hamilton ◽  
Hamish A Simpson ◽  
Marcus Beasley ◽  
...  

2021 ◽  
Vol 288 (1963) ◽  
Author(s):  
Iker Irisarri ◽  
Tatyana Darienko ◽  
Thomas Pröschold ◽  
Janine M. R. Fürst-Jansen ◽  
Mahwash Jamy ◽  
...  

Streptophytes are one of the major groups of the green lineage (Chloroplastida or Viridiplantae). During one billion years of evolution, streptophytes have radiated into an astounding diversity of uni- and multicellular green algae as well as land plants. Most divergent from land plants is a clade formed by Mesostigmatophyceae, Spirotaenia spp. and Chlorokybophyceae. All three lineages are species-poor and the Chlorokybophyceae consist of a single described species, Chlorokybus atmophyticus. In this study, we used phylogenomic analyses to shed light into the diversity within Chlorokybus using a sampling of isolates across its known distribution. We uncovered a consistent deep genetic structure within the Chlorokybus isolates, which prompted us to formally extend the Chlorokybophyceae by describing four new species. Gene expression differences among Chlorokybus species suggest certain constitutive variability that might influence their response to environmental factors. Failure to account for this diversity can hamper comparative genomic studies aiming to understand the evolution of stress response across streptophytes. Our data highlight that future studies on the evolution of plant form and function can tap into an unknown diversity at key deep branches of the streptophytes.


2020 ◽  
Author(s):  
Rebecca M. Varney ◽  
Daniel I. Speiser ◽  
Carmel McDougall ◽  
Bernard M. Degnan ◽  
Kevin M. Kocot

ABSTRACTMolluscs biomineralize structures that vary in composition, form, and function, prompting questions about the genetic mechanisms responsible for their production and the evolution of these mechanisms. Chitons (Mollusca, Polyplacophora) are a promising system for studies of biomineralization because they build a range of calcified structures including shell plates and spine- or scale-like sclerites. Chitons also harden the calcified teeth of their rasp-like radula with a coat of iron (as magnetite). Here we present the genome of the West Indian fuzzy chiton Acanthopleura granulata, the first from any aculiferan mollusc. The A. granulata genome contains homologs of many biomineralization genes identified previously in conchiferan molluscs. We expected chitons to lack genes previously identified from pathways conchiferans use to make biominerals like calcite and nacre because chitons do not use these materials in their shells. Surprisingly, the A. granulata genome has homologs of many of these genes, suggesting that the ancestral mollusc had a more diverse biomineralization toolkit than expected. The A. granulata genome has features that may be specialized for iron biomineralization, including a higher proportion of genes regulated directly by iron than other molluscs. A. granulata also produces two isoforms of soma-like ferritin: one is regulated by iron and similar in sequence to the soma-like ferritins of other molluscs, and the other is constitutively translated and is not found in other molluscs. The A. granulata genome is a resource for future studies of molluscan evolution and biomineralization.SIGNIFICANCE STATEMENTChitons are molluscs that make shell plates, spine- or scale-like sclerites, and iron-coated teeth. Currently, all molluscs with sequenced genomes lie within one major clade (Conchifera). Sequencing the genome of a representative from the other major clade (Aculifera) helps us learn about the origins and evolution of molluscan traits. The genome of the West Indian Fuzzy Chiton, Acanthopleura granulata, reveals chitons have homologs of many genes other molluscs use to make shells, suggesting all molluscs share some shell-making pathways. The genome of A. granulata has more genes that may be regulated directly by iron than other molluscs, and chitons produce a unique isoform of a major iron-transport protein (ferritin), suggesting that chitons have genomic specializations that contribute to their production of iron-coated teeth.


Author(s):  
James L. Cook ◽  
Kylee Rucinski ◽  
Cory R. Crecelius ◽  
Suzin Cunningham ◽  
Trent M. Guess

AbstractThis prospective randomized clinical trial assessed a novel device for initial management of knee range of motion (ROM), pain, and function after total knee arthroplasty (TKA). Primary TKA patients with preoperative ROM of at least 5° to 115° were randomized to initial knee motion management: Mizzou BioJoint Flex—novel motion-assistive device with prescribed physical therapy or standard physical therapy—prescribed physical therapy. ROM, pain score, and knee injury and osteoarthritis score for joint replacement (KOOSjr) were obtained preoperatively and 2 weeks, 6 weeks, and 3 months postoperatively. Patient satisfaction for both cohorts and subjective assessments of the MBF device were assessed at 3 months. Readmissions, reoperations, and complications were assessed through 1 year. Nineteen patients were randomized to each cohort, with no significant preoperative differences in demographics, pain score, KOOSjr score, or ROM. Six SPT (31.6%) and 3 MBF (15.8%) patients failed to regain preoperative ROM (p = 0.044). One SPT (5.3%) and eight MBF (42%) patients exceeded 125° ROM (p = 0.019) by 3 months. Total ROM (p = 0.039), pain (p = 0.0068), and function (p = 0.0027) were significantly better for MBF at 3 months. MBF patients reported significantly higher satisfaction (mean, 9.4 ± 1.1 vs. 8.0 ± 1.8, respectively; p = 0.0084). One patient in each group underwent manipulation under anesthesia. No other readmissions, reoperations, or complications were reported. A novel durable medical equipment device can provide a safe and effective patient-controlled method for initial management of knee ROM, pain, and function after primary TKA with potential clinically meaningful advantages over physical therapy alone. In conjunction with physical therapy, management with this novel knee flexion device more effectively restored knee ROM and early patient function when compared with therapy alone and was associated with higher proportions of patients regaining minimum (115°) and desired (125°) levels of knee ROM and clinically meaningful differences in pain scores, knee function, and patient satisfaction. This is a Level 1, prospective trial study.


2020 ◽  
Author(s):  
Zhanfeng Zhang ◽  
Jianming Zhong ◽  
Jikang Min ◽  
Dan Wang ◽  
Lidong Wu

Abstract BackgroundThe characteristics of blood loss and knee function after unicompartment knee arthroplasty(UKA) remains unclear. Utilization of tourniquet is considered to compromise the outcome of knee arthroplasty. This study aims to evaluate the hidden blood loss and function restoration of UKA without tourniquet by comparing with total knee arthroplasty(TKA).MethodsIn this retrospective study, a total of 112 patients were included from August 2017 to October 2018. Both the UKA group (n = 56) and the TKA group (n = 56) underwent procedure without utilization of tourniquet during the whole process. The gender, age, body mass index, American Society of Anesthesiologists score, Kellgren-Lawrence grade, preioperative Hb, and volume of hidden blood loss (HBL) were recorded and analysed. Knee function was assessed at 3 month and 12 month after procedure by using HSS score.ResultThe mean volume of HBL was significant lower in UKA group (324.23ml ± 147.05, 864.82ml ± 206.37, P = 0.001). The HSS score was higher in UKA group 3 month after procedure (88.16 ± 5.57, 83.04 ± 4.88, P = 0.033). No HBL difference was observed in either groups in terms of gender nor age. Hb level dropped to the bottom at the 4th day postoperatively. No correlation was observed between HBL and knee function.ConclusionWithout utilization of tourniquet, the HBL could not be ignored in UKA though it is much less than TKA, and the knee function was not compromised by it.Trial registrationCurrent trial ISRCTN85133278 (Retrospectively registered on 06 April 2020).


Sign in / Sign up

Export Citation Format

Share Document