scholarly journals Evaluating the protective potency of Acacia hydaspica R. Parker on histological and biochemical changes induced by Cisplatin in the cardiac tissue of rats

Author(s):  
Tayyaba Afsar ◽  
Suhail Razak ◽  
Ali Almajwal ◽  
Maria Shabbir ◽  
Muhammad Rashid Khan

Abstract Background Increase oxidative trauma is the main cause behind Cisplatin (CP) induced cardiotoxicity which restricts its clinical application as anti-neoplastic prescription. Acacia hydaspica is a natural shrub with diverse bioactivities. Acacia hydaspica ethyl acetate extract (AHE) ameliorated drug-induced cardiotoxicity in animals with anti-oxidative mechanisms. Current study aimed to evaluate the protective potential of A. hydaspica against cisplatin-induced myocardial injury. Methods Rats were indiscriminately distributed into six groups (n = 6). Group 1: control; Groups 2: Injected with CP (7.5 mg/kg bw, i.p, single dose) on day 16; Group 3: Treated for 21 days with AHE (400 mg/kg b.w, oral); Group 4: Received CP injection on day 16 and treated with AHE for 5 days post injection; Group 5: Received AHE (400 mg/kg b.w/day, p.o.) for 21 days and CP (7.5 mg/kg b.w., i.p.) on day 16; Group 6: Treated with silymarin (100 mg/kg b.w., p.o.) after 1 day interval for 21 days and CP injection (7.5 mg/kg b.w., i.p.) on day 16. On 22nd day, the animals were sacrificed and their heart tissues were removed. Cisplatin induced cardiac toxicity and the influence of AHE were evaluated by examination of serum cardiac function markers, cardiac tissue antioxidant enzymes, oxidative stress markers and histology. Results CP inoculation considerably altered cardiac function biomarkers in serum and diminished the antioxidant enzymes levels, while increased oxidative stress biomarkers in cardiac tissues AHE treatment attenuated CP-induced deteriorations in creatine kinase (CK), Creatine kinase isoenzymes MB (CK-MB), cardiac Troponin I (cTNI) and lactate dehydrogenase (LDH) levels and ameliorated cardiac oxidative stress markers as evidenced by decreasing lipid peroxidation, H2O2 and NO content along with augmentation in phase I and phase II antioxidant enzymes. Additionally, CP inoculation also induced morphological alterations which were ameliorated by AHE. In pretreatment group more significant protection was observed compared to post-treatment group indicating preventive potential of AHE. The protective potency of AHE was comparable to silymarin. Conclusion Results demonstrate that AHE attenuated CP induce cardiotoxicity. The polyphenolic metabolites and antioxidant properties of AHE might be responsible for its protective influence.

2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Olufunke Esan Olorundare ◽  
Adejuwon Adewale Adeneye ◽  
Akinyele Olubiyi Akinsola ◽  
Daniel Ayodele Sanni ◽  
Mamoru Koketsu ◽  
...  

Doxorubicin is widely applied in hematological and solid tumor treatment but limited by its off-target cardiotoxicity. Thus, cardioprotective potential and mechanism(s) of CVE in DOX-induced cardiotoxicity were investigated using cardiac and oxidative stress markers and histopathological endpoints. 50–400 mg/kg/day CVE in 5% DMSO in distilled water were investigated in Wistar rats intraperitoneally injected with 2.5 mg/kg DOX on alternate days for 14 days, using serum troponin I and LDH, complete lipid profile, cardiac tissue oxidative stress marker assays, and histopathological examination of DOX-treated cardiac tissue. Preliminary qualitative and quantitative assays of CVE’s secondary metabolites were also conducted. Phytochemical analyses revealed the presence of flavonoids (34.79 ± 0.37 mg/100 mg dry extract), alkaloids (36.73 ± 0.27 mg/100 mg dry extract), reducing sugars (07.78 ± 0.09 mg/100 mg dry extract), and cardiac glycosides (24.55 ± 0.12 mg/100 mg dry extract). 50–400 mg/kg/day CVE significantly attenuated increases in the serum LDH and troponin I levels. Similarly, the CVE dose unrelatedly decreased serum TG and VLDL-c levels without significant alterations in the serum TC, HDL-c, and LDL-c levels. Also, CVE profoundly attenuated alterations in the cardiac tissue oxidative stress markers’ activities while improving DOX-associated cardiac histological lesions that were possibly mediated via free radical scavenging and/or antioxidant mechanisms. Overall, CVE may play a significant therapeutic role in the management of DOX-induced cardiotoxicity in humans.


2020 ◽  
Vol 11 (2) ◽  
pp. 88-98
Author(s):  
Babatunde Ogunlade ◽  
◽  
Olasumbo Afolayan ◽  
Sunday Adelakun ◽  
◽  
...  

Lead (Pb) exposure induces oxidative stress causing imbalance in antioxidant enzymes, cognitive impairments and neurodegeneration. This study investigated the neuroprotective and antioxidant properties of sulphoraphane (SFN) on Pb-induced neurotoxicity of adult Wistar rats. Forty animals (150 ± 20 g) were divided into four groups (n=10): Group A received normal saline as placebo; Group B received 50 mg/kg body weight (bw) of Lead only; Group C received a combination of 50 mg/kg bw of Lead and 50 mg/kg bw of SFN; Group D received 50 mg/kg bw of SFN only. All administration was through oral gavages for 28 days; animals underwent behavioural tests (Morris water and Y- mazes); and thereafter sacrificed and brains extracted. Biochemical estimations of antioxidants (superoxide dismutase, reduced glutathione, and catalase), oxidative stress markers (malondialdehyde, nitric oxide, and hydrogen peroxide), neurotransmitters (dopamine, serotonin, and norepinephrine) and hippocampal histology were done. The results showed significant increase in escape latency, norepinephrine and oxidative stress markers with concomitant decrease percentage correct alternation, serotonin, dopamine and antioxidant enzymes in Pb exposed rats compared with the control. However, the co-administration of SFN and Pb significantly attenuated Pb neurotoxicity. Sulphoraphane is capable of ameliorating oxidative stress induced neurobehavioural deficits and hippocampal neurochemistry caused by Pb exposure in Alzheimer’s type animal model of neurodegenerative disorder.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Olufunke Olorundare ◽  
Adejuwon Adeneye ◽  
Akinyele Akinsola ◽  
Sunday Soyemi ◽  
Alban Mgbehoma ◽  
...  

Trastuzumab (TZM) is a humanized monoclonal antibody that has been approved for the clinical management of HER2-positive metastatic breast and gastric cancers but its use is limited by its cumulative dose and off-target cardiotoxicity. Unfortunately, till date, there is no approved antidote to this off-target toxicity. Therefore, an acute study was designed at investigating the protective potential and mechanism(s) of CVE and IGE in TZM-induced cardiotoxicity utilizing cardiac enzyme and oxidative stress markers and histopathological endpoints. 400 mg/kg/day CVE and IGE dissolved in 5% DMSO in sterile water were investigated in Wistar rats injected with 2.25 mg/kg/day/i.p. route of TZM for 7 days, using serum cTnI and LDH, complete lipid profile, cardiac tissue oxidative stress markers assays, and histopathological examination of TZM-intoxicated heart tissue. Results showed that 400 mg/kg/day CVE and IGE profoundly attenuated increases in the serum cTnI and LDH levels but caused no significant alterations in the serum lipids and weight gain pattern in the treated rats. CVE and IGE profoundly attenuated alterations in the cardiac tissue oxidative stress markers’ activities while improving TZM-associated cardiac histological lesions. These results suggest that CVE and IGE could be mediating its cardioprotection via antioxidant, free radical scavenging, and antithrombotic mechanisms, thus, highlighting the therapeutic potentials of CVE and IGE in the management of TZM-mediated cardiotoxicity.


2010 ◽  
Vol 36 (1) ◽  
pp. 4-9 ◽  
Author(s):  
Palanisamy Pasupathi ◽  
Uma Manivannan ◽  
Perisamy Manivannan ◽  
Mathiyalagan Deepa

Free radicals play an important role in the pathogenesis of tissue damage in many clinical disorders, including atherosclerosis. This study was to investigate lipids and oxidative stress markers among women with 50 healthy non-pregnant compare with 50 healthy pregnant and 50 pregnancy-induced hypertensive subjects and correlate with cardiac troponin I (cTnI) and troponin T (cTnT). The level of plasma thiobarbituric acid reactive substances (TBARS), cTnI and cTnT levels significantly increase in pregnancy-induced hypertension compare with other groups. The level of lipids significantly altered in pregnancy-induced hypertension. Conversely, the activities of both enzymatic and non-enzymatic antioxidants were significantly decreased in pregnancy-induced hypertension compared to non-pregnant and healthy pregnant. Our data suggest that there is an imbalance between lipoperoxidation and antioxidants levels during pregnancy and preeclampsia. Serum cTnI and cTnT are elevated in women with pregnancy-induced hypertension indicating some degree of cardiac myofibrillar damage and cardiac dysfunction.Online: 11 July 2010DOI: http://dx.doi.org/10.3329/bmrcb.v36i1.4806Bangladesh Med Res Counc Bull 2010; 36: 4-9


2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Aein Azarang ◽  
Omid Farshad ◽  
Mohammad Mehdi Ommati ◽  
Akram Jamshidzadeh ◽  
Reza Heidari ◽  
...  

Background. Treating nonalcoholic fatty liver disease (NAFLD) is considered one of the public health priorities in the past decade. So far, probiotics have represented promising results in controlling the signs and symptoms of NAFLD. However, attempts to find the ideal probiotic strain are still ongoing. The present study is designed to find the best strain amongst suitable probiotic strains according to their ability to ameliorate histopathological and oxidative stress biomarkers in hepatic steatosis-induced rats. Methods. Initially, four probiotics species, including Lactobacillus (L.) acidophilus, L. casei, L. reuteri, and Bacillus coagulans, were cultured and prepared as a lyophilized powder for animals. The experiment lasted for fifty days. Initially, hepatic steatosis was induced by excessive ingestion of D-fructose in rats for eight weeks, followed by eight weeks of administering probiotics and D-fructose concurrently. Forty-two six-week-old male rats were alienated to different groups and were supplemented with different probiotics ( 1 ∗ 10 9   CFU in 500 mL drinking water). After eight weeks, blood and liver samples were taken for further evaluation, and plasma and oxidative stress markers corresponding to liver injuries were examined. Results. Administration of probiotics over eight weeks reversed hepatic and blood triglyceride concentration and blood glucose levels. Also, probiotics significantly suppressed markers of oxidative stress in the liver tissue. Conclusions. Although some of the single probiotic formulations were able to mitigate oxidative stress markers, mixtures of probiotics significantly ameliorated more symptoms in the NAFLD animals. This enhanced effect might be due to probiotics’ cumulative potential to maintain oxidative stress and deliver improved lipid profiles, liver function markers, and inflammatory markers.


2019 ◽  
Vol 38 (3) ◽  
pp. 267-274 ◽  
Author(s):  
Shahrokh Bagheri ◽  
Mostafa Moradi Sarabi ◽  
Peyman Khosravi ◽  
Reza Mohammadrezaei Khorramabadi ◽  
Saeid Veiskarami ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Srijita Ghosh ◽  
Sanglap Mitra ◽  
Atreyee Paul

The physiological and biochemical responses to increasing NaCl concentrations, along with low concentrations of gibberellic acid or spermine, either alone or in their combination, were studied in mungbean seedlings. In the test seedlings, the root-shoot elongation, biomass production, and the chlorophyll content were significantly decreased with increasing NaCl concentrations. Salt toxicity severely affected activities of different antioxidant enzymes and oxidative stress markers. Activities of antioxidant enzymes, superoxide dismutase (SOD), and catalase (CAT) increased significantly over water control. Similarly, oxidative stress markers such as proline, malondialdehyde (MDA), and hydrogen peroxide (H2O2) contents also increased as a result of progressive increase in salt stress. Combined application of NaCl along with low concentrations of either gibberellic acid (5 µM) or spermine (50 µM) in the test seedlings showed significant alterations, that is, drastic increase in seedling elongation, increased biomass production, increased chlorophyll content, and significant lowering in all the antioxidant enzyme activities as well as oxidative stress marker contents in comparison to salt treated test seedlings, leading to better growth and metabolism. Our study shows that low concentrations of either gibberellic acid or spermine will be able to overcome the toxic effects of NaCl stress in mungbean seedlings.


Sign in / Sign up

Export Citation Format

Share Document