scholarly journals Panax notoginseng saponins reverse P-gp-mediated steroid resistance in lupus: involvement in the suppression of the SIRT1/FoxO1/MDR1 signalling pathway in lymphocytes

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Feng Pan ◽  
Yue-jin Li ◽  
Ying Lu

Abstract Background P-glycoprotein (P-gp)-mediated steroid resistance (SR) has been suggested to play a significant role in lupus nephritis (LN) treatment failure. Panax notoginseng saponins (PNS), the main effective components of the traditional Chinese medicine notoginseng, exhibited potent reversal capability of P-gp-mediated SR, but its mechanism remains unknown. This study aimed to investigate the effect of PNS on reversing SR in lupus and its underlying mechanism in vivo and in vitro. Methods In this study, an SR animal and splenic lymphocyte model were established using low-dose methylprednisolone (MP). Flow cytometry was used to detect the effect of PNS on reversing P-gp-mediated SR and the expression of P-gp in different T-cells phenotypes. Serum levels of ANA and dsDNA in lupus mice were measured by ELISA. Apoptosis was identified by Annexin V-FITC/PI staining. RT–PCR and Western blotting were used to detect the protein and mRNA expression levels of SIRT1, FoxO1, and MDR1 in SR splenic lymphocytes from lupus mice (SLCs/MPs). Results PNS could reverse the SR in lupus mice. Simultaneously, PNS increased the apoptotic effect of MP on SLCs/MP cells. The increased accumulation of rhodamine-123 (Rh-123) indicated that intracellular steroid accumulation could be increased by the action of PNS. Moreover, PNS decreased the expression of P-gp levels. Further experiments elucidated that the SIRT1/FoxO1/MDR1 signalling pathway existed in SLCs/MP cells, and PNS suppressed its expression level to reverse SR. The expression of P-gp in Th17 from SLCs/MP cells was increased, while PNS could reduce its level in a more obvious trend. Conclusion The present study suggested that PNS reversed P-gp-mediated SR via the SIRT1/FoxO1/MDR1 signalling pathway, which might become a valuable drug for the treatment of SR in lupus. Th17 might be the main effector cell of PNS reversing SR.

2021 ◽  
Author(s):  
Feng Pan ◽  
Ying Lu

Abstract Backgrounds: Microangiopathy is the most basic pathological manifestation of lupus nephritis (LN), and glomerular endothelial cells (GECs) injury is an important pathological mechanism. LN patients with microangiopathy are prone to steroid resistance (SR). Our previous studies confirmed that Panax notoginseng saponins (PNS) could reverse SR by downregulating the expression of P-gp in SR lymphocytes of LN mice (SLCsL/S). However, the mechanism of how circulating lymphocytes transmit SR information to GECs and thus affect the efficacy of kidney treatment is not clear. Recent studies have found that exosomes (exos) are an important carrier for intercellular bioactive substance communication. The aim of the study is to investigate whether exosomes derived from SLCsL/S mediate SR in GECs and PNS intervention.Methods: Exosomes isolated from SLCsL/S were characterized, and in vitro cell coculture was further conducted to investigate the effect of SLCsL/S-derived exosomes in the SR of GECs and PNS intervention. Sequencing was used to define the exosomal miRNA expression profiling of SR GECs. Moreover, the in vivo experiments were performed through the injection of exosomes extracted from SLCsL/S into the tail vein of mice.Results: In this study, we showed that exosomes derived from SLCsL/S could transmit SR information to GECs and lead to the aggravation of inflammatory injury through conferring P-gp, which were negated by a P-gp inhibitor. Further, we identified higher levels of exosomal miR-125b-5p from SR GECs were associated with SR in LN and could serve as biomarker for the risk of developing SR. PNS could reverse the SR of GECs and alleviate inflammatory injury by suppressing exosomal P-gp levels from lymphocytes to GECs in vitro and in vivo.Conclusions: Our findings suggest that exosomal transfer of SLCsL/S derived P-gp confer SR to GECs, and PNS can target exosome communication to reverse SR in LN, which provides new ideas and a scientific basis for improving the clinical efficacy of traditional Chinese medicine in the treatment of refractory LN.


2016 ◽  
Vol 190 ◽  
pp. 301-312 ◽  
Author(s):  
Xiaowei Shi ◽  
Wenjing Yu ◽  
Tiantian Yang ◽  
Wei Liu ◽  
Yizhou Zhao ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yang Mu ◽  
Huang-Guan Dai ◽  
Ling-Bo Luo ◽  
Jing Yang

Abstract Background Infertility is a common complication in obese men. Oxidative stress and testicular apoptosis play critical roles in obesity-induced spermatogenesis dysfunction. It has been reported that irisin, an exercise-induced myokine, may attenuate oxidative damage and testicular apoptosis in several diseases; however, its role in obesity-induced spermatogenesis dysfunction remains unclear. The purpose of this study was to investigate the role and underlying mechanism of irisin in obesity-induced dysfunction of spermatogenesis. Methods Male mice were fed a high-fat diet (HFD) for 24 weeks to establish a model of obesity-induced spermatogenesis dysfunction. To explore the effects of irisin, mice were subcutaneously infused with recombinant irisin for 8 weeks beginning at 16 weeks after starting a HFD. To confirm the role of AMP-activated protein kinase α (AMPKα), AMPKα-deficient mice were used. Results The data showed decreased serum irisin levels in obese patients, which was negatively correlated with sperm count and progressive motility. Irisin was downregulated in the plasma and testes of obese mice. Supplementation with irisin protected against HFD-induced spermatogenesis dysfunction and increased testosterone levels in mice. HFD-induced oxidative stress, endoplasmic reticulum (ER) stress and testicular apoptosis were largely attenuated by irisin treatment. Mechanistically, we identified that irisin activated the AMPKα signalling pathway. With AMPKα depletion, we found that the protective effects of irisin on spermatogenesis dysfunction were abolished in vivo and in vitro. Conclusions In conclusion, we found that irisin alleviated obesity-related spermatogenesis dysfunction via activation of the AMPKα signalling pathway. Based on these findings, we hypothesized that irisin is a potential therapeutic agent against obesity-related spermatogenesis dysfunction.


Reproduction ◽  
2003 ◽  
pp. 709-716 ◽  
Author(s):  
G Maillet ◽  
A Benhaim ◽  
H Mittre ◽  
C Feral

Follicular atresia is characterized by a rapid loss of granulosa cells and, to a lesser extent, theca cells, via apoptosis. The aim of this study was to investigate the possible involvement of theca cell secretions in the regulation of apoptosis of rabbit granulosa cells. The annexin-V binding method based on externalization of phosphatidylserine to the outer layer of plasma membrane during apoptosis was used to detect apoptotic granulosa cells in flow cytometry. Regulation of apoptosis of granulosa cells was studied in three different culture systems: (i) isolated cultured granulosa cells, (ii) granulosa cells obtained from cultured preovulatory follicles and (iii) granulosa cells co-cultured with theca cells. The results of this study indicate that: (i) the rate of apoptosis of granulosa cells was significantly reduced when granulosa cells were co-cultured with theca cells or obtained from cultured preovulatory follicles in comparison with isolated cultured granulosa cells; (ii) FSH exerts its anti-apoptotic effect only on granulosa cells issued from cultured preovulatory follicles; (iii) ovarian steroids do not affect the percentage of isolated apoptotic granulosa cells; and (iv) the occurrence of an apoptotic process in rabbit theca cells could be upregulated in vitro by hCG and an analogue of the gonadotrophin second messenger cAMP. The results of this study indicate that in rabbits (i) steroids were ineffective in vitro in protecting isolated granulosa cells against apoptosis in comparison with observations in vivo in rats, and (ii) the presence of theca cells was efficient to reduce granulosa cell apoptosis but not sufficient to allow the anti-apoptotic effect of gonadotrophins observed in cultured follicles.


2014 ◽  
Vol 37 (4) ◽  
pp. 560-568 ◽  
Author(s):  
Lixing Liu ◽  
Lingqun Zhu ◽  
Yihuai Zou ◽  
Wei Liu ◽  
Xiaoqian Zhang ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Xuelian Zhang ◽  
Bin Zhang ◽  
Chenyang Zhang ◽  
Guibo Sun ◽  
Xiaobo Sun

The prevalence of individuals who are overweight or obese is rising rapidly globally. Currently, majority of drugs used to treat obesity are ineffective or are accompanied by obvious side effects; hence, the options are very limited. Therefore, it is necessary to find more effective and safer anti-obesity drugs. It has been proven in vivo and in vitro that the active ingredient notoginsenosides isolated from traditional Chinese medicine Panax notoginseng (Burk.) F. H. Chen exhibits anti-obesity effects. Notoginsenosides can treat obesity by reducing lipid synthesis, inhibiting adipogenesis, promoting white adipose tissue browning, increasing energy consumption, and improving insulin sensitivity. Although notoginsenosides are potential drugs for the treatment of obesity, their effects and mechanisms have not been analyzed in depth. In this review, the anti-obesity potential and mechanism of action of notoginsenosides were analyzed; thus laying emphasis on the timely prevention and treatment of obesity.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1516-1516
Author(s):  
Wenjing Lang ◽  
Fangyuan Chen ◽  
Linyun Zhou

Abstract Background: High expression of the ecotropic viral integration site-1 (EVI-1) is an independent negative prognostic indicator of survival in leukaemia patients. Zebrafish (Danio rerio) is a vertebrate animal model commonly used to examine haematopoiesis and myeloid malignancies. To clarify the molecular mechanisms of EVI-1, we previously introduced the human EVI-1 gene into embryonic zebrafish through a heat-shock promoter and established the stable germ-line Tg(EVI-1: HSE: EGFP) zebrafish (Shen et al, 2013). Arsenic trioxide (As2O3, ATO) is one of the effective anticancer drugs, especially for patients with leukaemia (Udupa et al, 2017). We thus aimed to explore the anticancer effects of ATO and the underlying functions associated with EVI-1 in an in vivo zebrafish model and in AML cells in vitro. Results: We determined EVI-1 expression in mononuclear cells isolated from the bone marrow and peripheral blood of AML patients and healthy donors by RT-qPCR and Western blot analysis. EVI-1 was highly expressed in primary AML (Fig 1A). Then, EVI-1 expression was detected in five leukaemia cell lines (K562, HL-60, U937, THP-1 and MV4-11) and normal PBMCs. Among these five leukaemia cell lines, THP-1 has the highest EVI-1 expression (Fig 1B and Fig1C). Primary acute monocytic leukaemia cells from one patient with high expression of EVI-1 were treated with ATO. We found ATO could significantly decrease EVI-1 mRNA (Fig 2A). Between the ATO-treated groups and the control group, the expression of EVI-1 were significantly reduced in the THP-1 cell line (Fig 2B). Next, we evaluated the EVI-1 expression in Tg(EVI-1: HSE; EGFP) transgenic zebrafish embryos over dose courses of ATO exposure (Fig 2C). Consistent with the results of our in vitro study, ATO decreased EVI-1 expression in a dose-dependent manner after 72 h (Fig 2C). Taken together, these results indicate that ATO is an inhibitor of EVI-1 expression both in vivo and in vitro. We investigate whether the reduction of THP-1 cells viability is due to apoptosis, THP-1 cells were incubated with 3 µM of ATO for 24 h, 48 h or 72 h. In the light microscopy images, THP-1 cells exhibited typical apoptotic characteristics (Fig 3A). The proportion of apoptotic cells was represented as early apoptotic cells (annexin V+/PI- staining, the lower right quadrant) plus late apoptotic cells (annexin V+/PI+ staining, the upper right quadrant) (Fig 3B). In cytometric analysis, ATO increased the percentage of apoptotic THP-1 cells in a dose- and time-dependent manner. We found that ATO increased the expressions of JNK, p-JNK, p-P53, PUMA, Bax, caspase-9 and caspase-3 (including cleaved caspase-9 and -3) but decreased the expressions of Bcl-2 and Bcl-xl (Fig 3C). To further verify the role of the JNK pathway in ATO-mediated THP-1 cell apoptosis, we examined if the inhibitor of JNK (SP600125) could reverse ATO-induced apoptosis in THP-1 cells. We found SP600125 not only decreased the pro-apoptotic effect of ATO in the THP-1 cell line (Fig 4A and Fig 4B) but also decreased the activation of the JNK-mediated apoptotic signalling pathway (Fig 4C). SP600125 silenced the activation of JNK by completely inhibiting the phosphorylation of JNK but had little effect on EVI-1 expression (Fig 4C). To test whether EVI-1 modulates apoptosis via the JNK signalling pathway, we transiently transfected THP-1 cells with EVI-1 siRNA which significantly reduced EVI-1 expression (Fig 5A). Silencing EVI-1 had a significant effect on the activation of the JNK pathway and the induction of THP-1 cell apoptosis (Fig 5B and Fig 5C). Conclusion: Our study demonstrated that the apoptotic pathway in THP-1 cells induced by ATO is closely associated with the oncogene EVI-1, the pro-apoptotic protein JNK, p-JNK, p-P53, PUMA, Bax, caspase-9 and caspase-3 (including cleaved caspase-9 and cleaved caspase-3), and the anti-apoptotic proteins Bcl-2 and Bcl-xL. ATO can downregulate EVI-1 mRNA and oncoprotein and block the repression of EVI-1 in the JNK pathway. Furthermore, the activated JNK signalling pathway regulated the expression level of apoptosis-associated proteins, including p-P53, PUMA, Bax, Bcl‐xL, Bcl‐2, Bax, caspase-9 and caspase-3(Fig 6). These findings may provide a novel theoretical basis for the development of personalized medical strategies for the treatment of EVI-1 positive AML patients. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 21 (24) ◽  
pp. 9704
Author(s):  
Yu-Chieh Lee ◽  
Wei-Ting Wong ◽  
Lan-Hui Li ◽  
Lichieh Julie Chu ◽  
Mridula P. Menon ◽  
...  

Oral squamous cell carcinoma (OSCC) accounts for 5.8% of all malignancies in Taiwan, and the incidence of OSCC is on the rise. OSCC is also a common malignancy worldwide, and the five-year survival rate remains poor. Therefore, new and effective treatments are needed to control OSCC. In the present study, we prepared ginsenoside M1 (20-O-beta-d-glucopyranosyl-20(S)-protopanaxadiol), a major deglycosylated metabolite of ginsenoside, through the biotransformation of Panax notoginseng leaves by the fungus SP-LSL-002. We investigated the anti-OSCC activity and associated mechanisms of ginsenoside M1 in vitro and in vivo. We demonstrated that ginsenoside M1 dose-dependently inhibited the viability of human OSCC SAS and OEC-M1 cells. To gain further insight into the mode of action of ginsenoside M1, we demonstrated that ginsenoside M1 increased the expression levels of Bak, Bad, and p53 and induced apoptotic DNA breaks, G1 phase arrest, PI/Annexin V double-positive staining, and caspase-3/9 activation. In addition, we demonstrated that ginsenoside M1 dose-dependently inhibited the colony formation and migration ability of SAS and OEC-M1 cells and reduced the expression of metastasis-related protein vimentin. Furthermore, oral administration or subcutaneous injection of ginsenoside M1 significantly reduced tumor growth in SAS xenograft mice. These results indicate that ginsenoside M1 can be translated into a potential therapeutic against OSCC.


Sign in / Sign up

Export Citation Format

Share Document