scholarly journals Characterization of genome-wide association study data reveals spatiotemporal heterogeneity of mental disorders

2020 ◽  
Vol 13 (S11) ◽  
Author(s):  
Yulin Dai ◽  
Timothy D. O’Brien ◽  
Guangsheng Pei ◽  
Zhongming Zhao ◽  
Peilin Jia

Abstract Background Psychiatric disorders such as schizophrenia (SCZ), bipolar disorder (BIP), major depressive disorder (MDD), attention deficit-hyperactivity disorder (ADHD), and autism spectrum disorder (ASD) are often related to brain development. Both shared and unique biological and neurodevelopmental processes have been reported to be involved in these disorders. Methods In this work, we developed an integrative analysis framework to seek for the sensitive spatiotemporal point during brain development underlying each disorder. Specifically, we first identified spatiotemporal gene co-expression modules for four brain regions three developmental stages (prenatal, birth to 11 years old, and older than 13 years), totaling 12 spatiotemporal sites. By integrating GWAS summary statistics and the spatiotemporal co-expression modules, we characterized the risk genes and their co-expression partners for five disorders. Results We found that SCZ and BIP, ASD and ADHD tend to cluster with each other and keep a distance from other psychiatric disorders. At the gene level, we identified several genes that were shared among the most significant modules, such as CTNNB1 and LNX1, and a hub gene, ATF2, in multiple modules. Moreover, we pinpointed two spatiotemporal points in the prenatal stage with active expression activities and highlighted one postnatal point for BIP. Further functional analysis of the disorder-related module highlighted the apoptotic signaling pathway for ASD and the immune-related and cell-cell adhesion function for SCZ, respectively. Conclusion Our study demonstrated the dynamic changes of disorder-related genes at the network level, shedding light on the spatiotemporal regulation during brain development.

2020 ◽  
Vol 63 (1) ◽  
Author(s):  
Shiqiang Cheng ◽  
Fanglin Guan ◽  
Mei Ma ◽  
Lu Zhang ◽  
Bolun Cheng ◽  
...  

Abstract Background. Psychiatric disorders are a group of complex psychological syndromes with high prevalence. Recent studies observed associations between altered plasma proteins and psychiatric disorders. This study aims to systematically explore the potential genetic relationships between five major psychiatric disorders and more than 3,000 plasma proteins. Methods. The genome-wide association study (GWAS) datasets of attention deficiency/hyperactive disorder (ADHD), autism spectrum disorder (ASD), bipolar disorder (BD), schizophrenia (SCZ) and major depressive disorder (MDD) were driven from the Psychiatric GWAS Consortium. The GWAS datasets of 3,283 human plasma proteins were derived from recently published study, including 3,301 study subjects. Linkage disequilibrium score (LDSC) regression analysis were conducted to evaluate the genetic correlations between psychiatric disorders and each of the 3,283 plasma proteins. Results. LDSC observed several genetic correlations between plasma proteins and psychiatric disorders, such as ADHD and lysosomal Pro-X carboxypeptidase (p value = 0.015), ASD and extracellular superoxide dismutase (Cu-Zn; p value = 0.023), BD and alpha-N-acetylgalactosaminide alpha-2,6-sialyltransferase 6 (p value = 0.007), MDD and trefoil factor 1 (p value = 0.011), and SCZ and insulin-like growth factor-binding protein 6 (p value = 0.011). Additionally, we detected four common plasma proteins showing correlation evidence with both BD and SCZ, such as tumor necrosis factor receptor superfamily member 1B (p value = 0.012 for BD, p value = 0.011 for SCZ). Conclusions. This study provided an atlas of genetic correlations between psychiatric disorders and plasma proteome, providing novel clues for pathogenetic and biomarkers, therapeutic studies of psychiatric disorders.


2019 ◽  
Author(s):  
J Bralten ◽  
CJHM Klemann ◽  
NR Mota ◽  
W De Witte ◽  
C Arango ◽  
...  

ABSTRACTDifficulties with sociability include a tendency to avoid social contacts and activities, and to prefer being alone rather than being with others. While sociability is a continuously distributed trait in the population, decreased sociability represent a common early manifestation of multiple neuropsychiatric disorders such as Schizophrenia (SCZ), Bipolar Disorder (BP), Major Depressive Disorder (MDD), Autism Spectrum Disorders (ASDs), and Alzheimer’s disease (AD). We aimed to investigate the genetic underpinnings of sociability as a continuous trait in the general population. In this respect, we performed a genome-wide association study (GWAS) using a sociability score based on 4 social functioning-related self-report questions in the UK Biobank sample (n=342,461) to test the effect of individual genetic variants. This was followed by LD score analyses to investigate the genetic correlation with psychiatric disorders (SCZ, BP, MDD, ASDs) and a neurological disorder (AD) as well as related phenotypes (Loneliness and Social Anxiety). The phenotypic data indeed showed that the sociability score was decreased in individuals with ASD, (probable) MDD, BP and SCZ, but not in individuals with AD. Our GWAS showed 604 genome-wide significant SNPs, coming from 18 independent loci (SNP-based h2=0.06). Genetic correlation analyses showed significant correlations with SCZ (rg=0.15, p=9.8e-23), MDD (rg=0.68, p=6.6e-248) and ASDs (rg=0.27, p=4.5e-28), but no correlation with BP (rg=0.01, p=0.45) or AD (rg=0.04, p=0.55). Our sociability trait was also genetically correlated with Loneliness (rg=0.45, p=2.4e-8) and Social Anxiety (rg=0.48, p=0.002). Our study shows that there is a significant genetic component to variation in population levels of sociability, which is relevant to some psychiatric disorders (SCZ, MDD, ASDs), but not to BP and AD.


2021 ◽  
Author(s):  
William R Reay ◽  
Dylan J Kiltschewskij ◽  
Michael P Geaghan ◽  
Joshua R Atkins ◽  
Vaughan J Carr ◽  
...  

There is a long-standing interest in exploring the relationship between blood-based biomarkers of biological exposures and psychiatric disorders, despite their causal role being difficult to resolve in observational studies. In this study, we leverage genome-wide association study data for a large panel of heritable biochemical traits measured from serum to refine our understanding of causal effect in biochemical-psychiatric trait parings. In accordance with expectation we observed widespread evidence of positive and negative genetic correlation between psychiatric disorders and biochemical traits. We then implemented causal inference to distinguish causation from correlation and found strong evidence that C-reactive protein (CRP) exerts a causal effect on psychiatric disorders, along with other putatively causal relationships involving urate and glucose. Strikingly, these analyses suggested CRP has a protective effect on three disorders including anorexia nervosa, obsessive-compulsive disorder, and schizophrenia, whilst being a risk factor for major depressive disorder. Multivariable models that conditioned CRP effects on interleukin-6 signalling and body mass index suggested that CRP-schizophrenia relationship was not likely mediated by those factors. Collectively, these data suggest that there are shared pathways that influence both biochemical traits and psychiatric illness, including factors such as CRP that are likely to constitute a causal effect and could be targets for therapeutic intervention and precision medicine.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Joseph S. Reddy ◽  
Mariet Allen ◽  
Charlotte C. G. Ho ◽  
Stephanie R. Oatman ◽  
Özkan İş ◽  
...  

AbstractCerebral amyloid angiopathy (CAA) contributes to accelerated cognitive decline in Alzheimer’s disease (AD) dementia and is a common finding at autopsy. The APOEε4 allele and male sex have previously been reported to associate with increased CAA in AD. To inform biomarker and therapeutic target discovery, we aimed to identify additional genetic risk factors and biological pathways involved in this vascular component of AD etiology. We present a genome-wide association study of CAA pathology in AD cases and report sex- and APOE-stratified assessment of this phenotype. Genome-wide genotypes were collected from 853 neuropathology-confirmed AD cases scored for CAA across five brain regions, and imputed to the Haplotype Reference Consortium panel. Key variables and genome-wide genotypes were tested for association with CAA in all individuals and in sex and APOEε4 stratified subsets. Pathway enrichment was run for each of the genetic analyses. Implicated loci were further investigated for functional consequences using brain transcriptome data from 1,186 samples representing seven brain regions profiled as part of the AMP-AD consortium. We confirmed association of male sex, AD neuropathology and APOEε4 with increased CAA, and identified a novel locus, LINC-PINT, associated with lower CAA amongst APOEε4-negative individuals (rs10234094-C, beta = −3.70 [95% CI −0.49—−0.24]; p = 1.63E-08). Transcriptome profiling revealed higher LINC-PINT expression levels in AD cases, and association of rs10234094-C with altered LINC-PINT splicing. Pathway analysis indicates variation in genes involved in neuronal health and function are linked to CAA in AD patients. Further studies in additional and diverse cohorts are needed to assess broader translation of our findings.


2018 ◽  
Vol 14 (5) ◽  
pp. e1006105 ◽  
Author(s):  
Aaditya V. Rangan ◽  
Caroline C. McGrouther ◽  
John Kelsoe ◽  
Nicholas Schork ◽  
Eli Stahl ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Yunfei Tang ◽  
Yamei Liu ◽  
Lei Tong ◽  
Shini Feng ◽  
Dongshu Du ◽  
...  

Autism spectrum disorder (ASD) is a complex neurological disease characterized by impaired social communication and interaction skills, rigid behavior, decreased interest, and repetitive activities. The disease has a high degree of genetic heterogeneity, and the genetic cause of ASD in many autistic individuals is currently unclear. In this study, we report a patient with ASD whose clinical features included social interaction disorder, communication disorder, and repetitive behavior. We examined the patient’s genetic variation using whole-exome sequencing technology and found new de novo mutations. After analysis and evaluation, ARRB2 was identified as a candidate gene. To study the potential contribution of the ARRB2 gene to the human brain development and function, we first evaluated the expression profile of this gene in different brain regions and developmental stages. Then, we used weighted gene coexpression network analysis to analyze the associations between ARRB2 and ASD risk genes. Additionally, the spatial conformation and stability of the ARRB2 wild type and mutant proteins were examined by simulations. Then, we further established a mouse model of ASD. The results showed abnormal ARRB2 expression in the mouse ASD model. Our study showed that ARRB2 may be a risk gene for ASD, but the contribution of de novo ARRB2 mutations to ASD is unclear. This information will provide references for the etiology of ASD and aid in the mechanism-based drug development and treatment.


Sign in / Sign up

Export Citation Format

Share Document