scholarly journals Integrative and Comprehensive Pancancer Analysis of Regulator of Chromatin Condensation 1 (RCC1)

2021 ◽  
Vol 22 (14) ◽  
pp. 7374
Author(s):  
Changwu Wu ◽  
Yingjuan Duan ◽  
Siming Gong ◽  
Sonja Kallendrusch ◽  
Nikolas Schopow ◽  
...  

Regulator of Chromatin Condensation 1 (RCC1) is the only known guanine nucleotide exchange factor that acts on the Ras-like G protein Ran and plays a key role in cell cycle regulation. Although there is growing evidence to support the relationship between RCC1 and cancer, detailed pancancer analyses have not yet been performed. In this genome database study, based on The Cancer Genome Atlas, Genotype-Tissue Expression and Gene Expression Omnibus databases, the potential role of RCC1 in 33 tumors’ entities was explored. The results show that RCC1 is highly expressed in most human malignant neoplasms in contrast to healthy tissues. RCC1 expression is closely related to the prognosis of a broad variety of tumor patients. Enrichment analysis showed that some tumor-related pathways such as “cell cycle” and “RNA transport” were involved in the functional mechanism of RCC1. In particular, the conducted analysis reveals the relation of RCC1 to multiple immune checkpoint genes and suggests that the regulation of RCC1 is closely related to tumor infiltration of cancer-associated fibroblasts and CD8+ T cells. Coherent data demonstrate the association of RCC1 with the tumor mutation burden and microsatellite instability in various tumors. These findings provide new insights into the role of RCC1 in oncogenesis and tumor immunology in various tumors and indicate its potential as marker for therapy prognosis and targeted treatment strategies.

2021 ◽  
Author(s):  
Xiaopeng Ding ◽  
Jiahao Yu ◽  
Xin Shi ◽  
Kangwei Li ◽  
Shuoyi Ma ◽  
...  

Abstract Background: NEDD1 (NEDD1 Gamma-Tubulin Ring Complex Targeting Factor) plays a crucial impact in regulating cell cycle and the development of scirrhous gastric cancer. However, the role of NEDD1 hasn’t been reported in hepatocellular carcinoma (HCC) so far. The aim of this research is to explore the role of NEDD1 on the development and prognosis of HCC. Methods: HCC-related data were download from The Cancer Genome Atlas (TCGA) database. Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and gene set enrichment analysis (GSEA) were conducted by the LinkedOmics database. Results: The expression of NEDD1 has significant difference between tumor and adjacent normal tissues in HCC (P<0.01). We also found that NEDD1 was an independent risk factor in HCC patients (HR 1.643, 95%CI 1.125–2.398; P = 0.01). The study also demonstrated that NEDD1 expression was significantly relevant to the expression of several immune checkpoint genes, including CTLA-4, PD-L1 and PD-1. GSEA revealed that Cell cycle, MicroRNAs in cancer and Ribosome pathways were significantly enriched in NEDD1 overexpression phenotype. By integrating NEDD1 with other relevant factors, we constructed the prognostic nomogram to help the improvement of the prognosis for patients with HCC. The data from the International Cancer Genome Consortium (ICGC) database were used as an independent external validation of our prognostic model. Conclusion: The expression level of NEDD1 was negatively correlated to the prognosis of HCC patients and it may be a promising therapeutic target of HCC, which probably be able to predict the efficacy of immunotherapy for HCC patients.


Diagnostics ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 48 ◽  
Author(s):  
Ying Shen ◽  
Xin Li ◽  
Yanwei Su ◽  
Shaikh Atik Badshah ◽  
Bin Zhang ◽  
...  

Background: Hepcidin encoded by HAMP is vital to regulating proliferation, metastasis, and migration. Hepcidin is secreted specifically by the liver. This study sought to examine the functional role of hepcidin in hepatocellular carcinoma (HCC). Methods: Data in the Cancer Genome Atlas database was used to analyze HAMP expression as it relates to HCC prognosis. We then used the 5-ethynyl-20-deoxyuridine (EdU) incorporation assay, transwell assay, and flow cytometric analysis, respectively, to assess proliferation, migration, and the cell cycle. Gene set enrichment analysis (GSEA) was used to find pathways affected by HAMP. Results: HAMP expression was lower in hepatocellular carcinoma samples compared with adjacent normal tissue controls. Low HAMP expression was linked with a higher rate of metastasis and poor disease-free status. Downregulation of HAMP induced SMMC-7721 and HepG-2 cell proliferation and promoted their migration. HAMP could affect the cell cycle pathway and Western blotting, confirming that reduced HAMP levels activated cyclin-dependent kinase-1/stat 3 pathway. Conclusion: Our findings indicate that HAMP functions as a tumor suppressor gene. The role of HAMP in cellular proliferation and metastasis is related to cell cycle checkpoints. HAMP could be considered as a diagnostic biomarker and targeted therapy in HCC.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii28-ii28
Author(s):  
Alvaro Alvarado ◽  
Kaleab Tessema ◽  
Kunal Patel ◽  
Riki Kawaguchi ◽  
Richard Everson ◽  
...  

Abstract Despite efforts to gain a deeper understanding of its molecular architecture, glioblastoma (GBM) remains uniformly fatal. While genome-based molecular subtyping has revealed that GBMs may be parsed into several molecularly distinct categories, this insight has yielded little progress towards extending patient survival. In particular, the great phenotypic heterogeneity of GBM – both inter and intratumorally – has hindered therapeutic efforts. To this end, we interrogated tumor samples using a pathway-based approach to resolve tumoral heterogeneity. Gene set enrichment analysis (GSEA) was applied to gene expression data and used to provide an overview of each sample that can be compared to other samples by generating sample clusters based on overall patterns of enrichment. The Cancer Genome Atlas (TCGA) samples were clustered using the canonical and oncogenic signatures and in both cases the clustering was distinct from the molecular subtype previously reported and clusters were informative of patient survival. We also analyzed single cell RNA sequencing datasets and uniformly found two clusters of cells enriched for cell cycle regulation and survival pathways. We have validated our approach by generating gene lists from common elements found in the top contributing genesets for a particular cluster and testing the top targets in appropriate gliomasphere patient-derived lines. Samples enriched for cell cycle related genesets showed a decrease in sphere formation capacity when E2F1, out top target, was silenced and when treated with fulvestrant and calcitriol, which were identified as potential drugs targeting this genelist. Conversely, no changes were observed in samples not enriched for this gene list. Finally, we interrogated spatial heterogeneity and found higher enrichment of the proliferative signature in contrast enhancing compared with non-enhancing regions. Our studies relate inter- and intratumoral heterogeneity to critical cellular pathways dysregulated in GBM, with the ultimate goal of establishing a pipeline for patient- and tumor-specific precision medicine.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Woon Yong Jung ◽  
Kyueng-Whan Min ◽  
Young Ha Oh

AbstractThe histological classification of lung adenocarcinoma includes 5 types: lepidic, acinar, papillary, micropapillary and solid. The complex gene interactions and anticancer immune response of these types are not well known. The aim of this study was to reveal the survival rates, genetic alterations and immune activities of the five histological types and provide treatment strategies. This study reviewed the histological findings of 517 patients with lung adenocarcinoma from The Cancer Genome Atlas (TCGA) database and classified them into five types. We performed gene set enrichment analysis (GSEA) and survival analysis according to the different types. We found six oncogenic gene sets that were higher in lung adenocarcinoma than in normal tissues. In the survival analysis of each type, the acinar type had a favorable prognosis, and the solid subtype had an unfavorable prognosis; however, the survival differences between the other types were not significant. Our study focused on the solid type, which had the poorest prognosis. The solid type was related to adaptive immune resistance associated with elevated CD8 T cells and high CD274 (encoding PD-L1) expression. In the pathway analyses, the solid type was significantly related to high vascular endothelial growth factor (VEGF)-A expression, reflecting tumor angiogenesis. Non-necrosis/low immune response affected by high VEGF-A was associated with worse prognosis. The solid type associated with high VEGF-A expression may contribute to the development of therapeutic strategies for lung adenocarcinoma.


2021 ◽  
Author(s):  
Bo Cao ◽  
Huan Deng ◽  
Hao Cui ◽  
Ruiyang Zhao ◽  
Hanghang Li ◽  
...  

Abstract Background Phosphoglucomutase 1 (PGM1) acts as an important regulator in glucose metabolism. However, the role of PGM1 in gastric cancer (GC) remains unclear. This study aims to investigate the role of PGM1 and develop novel regimens based on metabolic reprogramming in GC. MethodsCorrelation and enrichment analysis of PGM1 was conducted based on The Cancer Genome Atlas database. Data derived from the Kaplan-Meier Plotter database were analyzed for correlations between PGM1 expression and survival time of GC patients. CCK-8, EdU, flow cytometry assays, generation of subcutaneous tumor and lung metastasis mouse models were used to determine growth and metastasis in vitro and in vivo. Cell glycolysis was detected by a battery of glycolytic indicators, including lactate, pyruvic acid, ATP production and glucose uptake. Fatty Acid Synthase (FASN) activity and detection of lipid regulators levels by western blot were used to reflect on the cell lipid metabolism. ResultsCorrelation and enrichment analysis suggested that PGM1 was closely associated with cell proliferation and metabolism. PGM1 was overexpressed in GC tissues and cell lines. High PGM1 expression served as an indicator of shorter survival for specific subpopulation of GC patients, which was also correlated with some clinicopathological features, including T stage and TNM stage. Under low glucose conditions, knockdown of PGM1 significantly suppressed cell proliferation and glycolysis levels, whereas lipid metabolism was enhanced. Orlistat, as a drug that was designed to inhibit FASN activity for obesity treatment, effectively induced apoptosis, suppressed FASN activity. However, orlistat conversely increased glycolytic levels in GC cells. Orlistat exhibited more significant inhibitive effects on GC progression after knockdown of PGM1 under glucose deprivation due to combination of glycolysis and lipid metabolism. ConclusionsDownregulation of PGM1 expression under glucose deprivation synergistically enhanced anti-cancer effects of orlistat. This combination application may serve as a novel strategy for GC treatment.


Genes ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 1108
Author(s):  
Dina Hesham ◽  
Shahenda El-Naggar

Embryonal tumor with multilayered rosettes (ETMR) is an aggressive and rare pediatric embryonal brain tumor. Amplification of C19MC microRNA cluster and expression of LIN28 are distinctive features of ETMR. Despite the increasing efforts to decipher ETMR, the biology remains poorly understood. To date, the role of aberrant alternative splicing in ETMR has not been thoroughly investigated. In the current study, a comprehensive analysis was performed on published unprocessed RNA-seq reads of tissue-matched ETMR and fetal controls datasets. Gene expression was quantified in samples using Kallisto/sleuth pipeline. For the alternative splicing analysis, STAR, SplAdder and rMATS were used. Functional enrichment analysis was subsequently performed using Metascape. The expression analysis identified a total of 3622 differentially expressed genes (DEGs) between ETMR and fetal controls while 1627 genes showed differential alternative splicing patterns. Interestingly, genes with significant alternative splicing events in ETMR were identified to be involved in signaling pathways such as ErbB, mTOR and MAPK pathways as well as ubiquitin-mediated proteolysis, cell cycle and autophagy. Moreover, up-regulated DEGs with alternative splicing events were involved in important biological processes including nuclear transport, regulation of cell cycle and regulation of Wnt signaling pathway. These findings highlight the role of aberrant alternative splicing in shaping the ETMR tumor landscape, and the identified pathways constitute potential therapeutic targets.


2016 ◽  
Vol 27 (8) ◽  
pp. 1346-1357 ◽  
Author(s):  
Pavol Cekan ◽  
Keisuke Hasegawa ◽  
Yu Pan ◽  
Emily Tubman ◽  
David Odde ◽  
...  

The coordination of cell cycle progression with the repair of DNA damage supports the genomic integrity of dividing cells. The function of many factors involved in DNA damage response (DDR) and the cell cycle depends on their Ran GTPase–regulated nuclear–cytoplasmic transport (NCT). The loading of Ran with GTP, which is mediated by RCC1, the guanine nucleotide exchange factor for Ran, is critical for NCT activity. However, the role of RCC1 or Ran⋅GTP in promoting cell proliferation or DDR is not clear. We show that RCC1 overexpression in normal cells increased cellular Ran⋅GTP levels and accelerated the cell cycle and DNA damage repair. As a result, normal cells overexpressing RCC1 evaded DNA damage–induced cell cycle arrest and senescence, mimicking colorectal carcinoma cells with high endogenous RCC1 levels. The RCC1-induced inhibition of senescence required Ran and exportin 1 and involved the activation of importin β–dependent nuclear import of 53BP1, a large NCT cargo. Our results indicate that changes in the activity of the Ran⋅GTP–regulated NCT modulate the rate of the cell cycle and the efficiency of DNA repair. Through the essential role of RCC1 in regulation of cellular Ran⋅GTP levels and NCT, RCC1 expression enables the proliferation of cells that sustain DNA damage.


Author(s):  
Di Yang ◽  
Jian Ma ◽  
Xiao-Xin Ma

The prognosis of patients with endometrial cancer (EC) is closely associated with immune cell infiltration. Although abnormal long non-coding RNA (lncRNA) expression is also linked to poor prognosis in patients with EC, the function and action mechanism of immune infiltration-related lncRNAs underlying the occurrence and development of EC remains unclear. In this study, we analyzed lncRNA expression using The Cancer Genome Atlas and clinical data and identified six lncRNAs as prognostic markers for EC, all of which are associated with the infiltration of immune cell subtypes, as illustrated by ImmLnc database and ssGSEA analysis. Real-time quantitative polymerase chain reaction showed that CDKN2B-AS1 was significantly overexpressed in EC, whereas its knockdown inhibited the proliferation and invasion of EC cells and the in vivo growth of transplanted tumors in nude mice. Finally, we constructed a competing endogenous RNA regulatory network and conducted Gene Ontology enrichment analysis to elucidate the potential molecular mechanism underlying CDKN2B-AS1 function. Overall, we identified molecular targets associated with immune infiltration and prognosis and provide new insights into the development of molecular therapies and treatment strategies against EC.


2021 ◽  
Vol 11 ◽  
Author(s):  
Feng Yang ◽  
Shaoyi Cai ◽  
Li Ling ◽  
Haiji Zhang ◽  
Liang Tao ◽  
...  

Colorectal cancer (CRC) is a major cause of cancer deaths worldwide. Unfortunately, many CRC patients are still being diagnosed at an advanced stage of the cancer, and the 5-year survival rate is only ~30%. Effective prognostic markers of CRC are therefore urgently needed. To address this issue, we performed a detailed bioinformatics analysis based on the Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Gene Expression Omnibus (GEO) databases to identify prognostic biomarkers for CRC, which in turn help in exploring potential drug-repurposing. We identified five hub genes (PGM2, PODXL, RHNO1, SCD, and SEPHS1), which had good performance in survival prediction and might be involved in CRC through three key pathways (“Cell cycle,” “Purine metabolism,” and “Spliceosome” KEGG pathways) identified by a KEGG pathway enrichment analysis. What is more, we performed a co-expression analysis between five hub genes and transcription factors to explore the upstream regulatory region. Furthermore, we screened the potential drug-repurposing for the five hub genes in CRC according to the Binding DB and ZINC15 databases. Taking together, we constructed a five-gene signature to predict overall survival of CRC and found the potential drug-repurposing, which may improve the outcome of CRC in the future.


2020 ◽  
Author(s):  
Xuehui Peng ◽  
Yonggang He ◽  
Xiaobing Huang ◽  
Nan You ◽  
Huiying Gu ◽  
...  

Abstract Background: The tumorigenesis and development of hepatocellular carcinoma (HCC) is a process involving multiple factors. The COMMDs family proteins were reported to play important roles in various disease and cancers including HCC. We previously found COMMD7 acted as a HCC-promotion factor; however, further understanding on COMMD7 was needed. We conducted these bioinformatics analysis for the purpose of comprehensive understanding of the functional role of COMMD7 in HCC.Methods: The bioinformatics analysis of COMMD7 were launched by online platforms including KEGG, GEPIA, cBioportal, Gene Ontology and The Kaplan-Meier plotter. Data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) were downloaded, and the data analysis and processing were conducted by RStudio (version 1.3.959) software.Results: The expression profile results of COMMD7 in TCGA and GTEx database suggested that COMMD7 expressed highly in liver tumor tissues and positively related with poorer prognosis (p<0.01); COMMD7 also contributed to the early development of HCC as its higher expression resulted in progression from stage I to stage III (p<0.01). Based on our previous studies, COMMD7 may target NF-κB signaling and CXCL10 to enhance the proliferation of hepatoma cells so that promoting the development of HCC. Conclusions:This study updates the current studies about the newly recognized roles of COMMD7 in the progression of HCC, summarizing the research progress and prospects of COMMD7 comprehensively, offering an outlook for the future investigation and targeted therapy of HCC.


Sign in / Sign up

Export Citation Format

Share Document