scholarly journals Oral probiotic activities and biosafety of Lactobacillus gasseri HHuMIN D

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Soyon Mann ◽  
Myeong Soo Park ◽  
Tony V. Johnston ◽  
Geun Eog Ji ◽  
Keum Taek Hwang ◽  
...  

Abstract Background Lactobacillus spp. have been researched worldwide and are used in probiotics, but due to difficulties with laboratory cultivation of and experimentation on oral microorganisms, there are few reports of Lactobacillus spp. being isolated from the oral cavity and tested against oral pathogens. This research sought to isolate and determine the safety and inhibitory capabilities of a Lactobacillus culture taken from the human body. Results One organism was isolated, named “L. gasseri HHuMIN D”, and evaluated for safety. A 5% dilution of L. gasseri HHuMIN D culture supernatant exhibited 88.8% inhibition against halitosis-producing anaerobic microorganisms and the organism itself exhibited powerful inhibitory effects on the growth of 11 oral bacteria. Hydrogen peroxide production reached 802 μmol/L after 12 h and gradually diminished until 24 h, it efficiently aggregated with P. catoniae and S. sanguinis, and it completely suppressed S. mutans-manufactured artificial dental plaque. L. gasseri HHuMIN D’s KB cell adhesion capacity was 4.41 cells per cell, and the cell adhesion of F. nucleatum and S. mutans diminished strongly in protection and displacement assays. Conclusion These results suggest that L. gasseri HHuMIN D is a safe, bioactive, lactobacterial food ingredient, starter culture, and/or probiotic microorganism for human oral health.

2021 ◽  
Author(s):  
Soyon Mann ◽  
Myeong Soo Park ◽  
Tony V. Johnston ◽  
Geun Eog Ji ◽  
Keum Taek Hwang ◽  
...  

Abstract Background Specific probiotic bacteria may have inhibitory effects against oral pathogens. Lactobacillus spp. have been researched worldwide and are used in probiotics, but due to difficulties with laboratory cultivation of and experimentation on oral microorganisms, there are few reports of Lactobacillus spp. being isolated from the oral cavity and tested against oral pathogens. This research aimed to determine the safety and inhibitory impacts of L. gasseri HHuMIN D as a potential oral probiotic with biotherapeutic capabilities against oral pathogens. Results The microbial and genetic characteristics of L. gasseri HHuMIN D were evaluated in this research. A 5% dilution of L. gasseri HHuMIN D culture supernatant exhibited 88.8% inhibition against halitosis-producing anaerobic microorganisms and L. gasseri HHuMIN D exhibited powerful inhibitory effects on the growth of every harmful oral bacterium tested. Unfortunately, other oral bacteria affected the growth of L. gasseri HHuMIN D, suggesting a poor proliferative response to most co-cultures. Hydrogen peroxide production by L. gasseri HHuMIN D reached 802 µmol/L after 12 hours and gradually diminished until 24 hours. It efficiently aggregated with P. catoniae and S. sanguinis, and completely supressed S. mutans-manufactured artificial dental plaque. L. gasseri HHuMIN D’s KB cell adhesion capacity was 4.41 cells per cell, and the cell adhesion of F. nucleatum and S. mutans diminished strongly in protection and displacement assays. L. gasseri HHuMIN D was evaluated for safety using ammonia and biogenic amine development, hemolytic property and mucin degradation testing, antibiotic susceptibility, and whole genome sequencing (WGS). Conclusion Our results suggest that L. gasseri HHuMIN D may be a safe, bioactive, lactobacterial food ingredient, starter culture, and/or probiotic microorganism for human oral health.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Susumu Mochizuki ◽  
Takeshi Fukumoto ◽  
Toshiaki Ohara ◽  
Kouhei Ohtani ◽  
Akihide Yoshihara ◽  
...  

AbstractThe rare sugar d-tagatose is a safe natural product used as a commercial food ingredient. Here, we show that d-tagatose controls a wide range of plant diseases and focus on downy mildews to analyze its mode of action. It likely acts directly on the pathogen, rather than as a plant defense activator. Synthesis of mannan and related products of d-mannose metabolism are essential for development of fungi and oomycetes; d-tagatose inhibits the first step of mannose metabolism, the phosphorylation of d-fructose to d-fructose 6-phosphate by fructokinase, and also produces d-tagatose 6-phosphate. d-Tagatose 6-phosphate sequentially inhibits phosphomannose isomerase, causing a reduction in d-glucose 6-phosphate and d-fructose 6-phosphate, common substrates for glycolysis, and in d-mannose 6-phosphate, needed to synthesize mannan and related products. These chain-inhibitory effects on metabolic steps are significant enough to block initial infection and structural development needed for reproduction such as conidiophore and conidiospore formation of downy mildew.


2019 ◽  
Vol 21 (1) ◽  
pp. 109 ◽  
Author(s):  
Chi-Ming Chan ◽  
Chien-Yu Hsiao ◽  
Hsin-Ju Li ◽  
Jia-You Fang ◽  
Der-Chen Chang ◽  
...  

Background: Vascular endothelial growth factor (VEGF) is upregulated by hypoxia and is a crucial stimulator for choroidal neovascularization (CNV) in age-related macular degeneration and pathologic myopia, as well as retinal neovascularization in proliferative diabetic retinopathy. Retinal and choroidal endothelial cells play key roles in the development of retinal and CNV, and subsequent fibrosis. At present, the effects of gold nanoparticles (AuNPs) on the VEGF-induced choroid-retina endothelial (RF/6A) cells are still unknown. In our study, we investigated the effects of AuNPs on RF/6A cell viabilities and cell adhesion to fibronectin, a major ECM protein of fibrovascular membrane. Furthermore, the inhibitory effects of AuNPs on RF/6A cell migration induced by VEGF and its signaling were studied. Methods: The cell viability assay was used to determine the viability of cells treated with AuNPs. The migration of RF/6A cells was assessed by the Transwell migration assay. The cell adhesion to fibronectin was examined by an adhesion assay. The VEGF-induced signaling pathways were determined by western blotting. Results: The 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assay revealed no cytotoxicity of AuNPs on RF/6A cells. AuNPs inhibited VEGF-induced RF/6A cell migration in a concentration-dependent manner but showed no significant effects on RF/6A cell adhesion to fibronectin. Inhibitory effects of AuNPs on VEGF-induced Akt/eNOS were found. Conclusions: These results suggest that AuNPs are an effective inhibitor of VEGF-induced RF/6A cell migration through the Akt/eNOS pathways, but they have no effects on their cell viabilities and cell adhesion to fibronectin.


2021 ◽  
pp. 122-131

Antimicrobial chemotherapeutic agents have been recommended for lowering oral bacteria growth. The main purpose of this study is to examine the efficacy of different toothpaste formulations in providing complete oral cavity protection against oral pathogens. By using a modified well agar diffusion assay, twenty kinds of toothpaste were examined for antimicrobial efficacy against two oral pathogens: Streptococcus aureus and Escherichia coli. The examination indicated that the majority of the non-herbal dentifrices and combinations of herbal and chemical-based dentifrices chosen for the investigation were viable against both microbial strains, however, to differing degrees. TP1 and TP17 were found the best against E. coli and S. aureus, respectively, with 21.553 mm and 23.443 mm as the zone of inhibition. From the herbal dentifrices, TP15 was found to have significant effect on E. coli, followed by TP19 for S. aureus. Nevertheless, toothpaste TP15 and TP19 were not effective against S. aureus and E. coli, respectively. In correlation, the inhibition zones of every single other dentifrice were found to be less. Antimicrobial activity against test organisms was stronger in a sodium lauryl sulphate-based dental formulations, when combined with fluoride. A formulation including TP15 exhibited substantial activity against the tested bacterium E. coli among herbal dentifrices. Statistical analysis demonstrated that the effectiveness against Gram-negative bacteria was greater than against Gram-positive bacteria. Furthermore, herbal toothpaste can be incorporated with chemotherapeutic agents to enhance its effectiveness against pathogens present in the oral microbiome. This comparison aids in the identification of the toothpaste’s shortcomings and benefits over other formulations, widening the scope of more potent toothpaste products.


1988 ◽  
Vol 107 (3) ◽  
pp. 1177-1187 ◽  
Author(s):  
K M Neugebauer ◽  
K J Tomaselli ◽  
J Lilien ◽  
L F Reichardt

Retinal ganglion neurons extend axons that grow along astroglial cell surfaces in the developing optic pathway. To identify the molecules that may mediate axon extension in vivo, antibodies to neuronal cell surface proteins were tested for their effects on neurite outgrowth by embryonic chick retinal neurons cultured on astrocyte monolayers. Neurite outgrowth by retinal neurons from embryonic day 7 (E7) and E11 chick embryos depended on the function of a calcium-dependent cell adhesion molecule (N-cadherin) and beta 1-class integrin extracellular matrix receptors. The inhibitory effects of either antibody on process extension could not be accounted for by a reduction in the attachment of neurons to astrocytes. The role of a third cell adhesion molecule, NCAM, changed during development. Anti-NCAM had no detectable inhibitory effects on neurite outgrowth by E7 retinal neurons. In contrast, E11 retinal neurite outgrowth was strongly dependent on NCAM function. Thus, N-cadherin, integrins, and NCAM are likely to regulate axon extension in the optic pathway, and their relative importance varies with developmental age.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Francis Ocheng ◽  
Freddie Bwanga ◽  
Moses Joloba ◽  
Abier Softrata ◽  
Muhammad Azeem ◽  
...  

The study assessed the growth inhibitory effects of essential oils extracted from ten Ugandan medicinal plants (Bidens pilosa, Helichrysum odoratissimum, Vernonia amygdalina, Hoslundia opposita, Ocimum gratissimum, Cymbopogon citratus, Cymbopogon nardus, Teclea nobilis, Zanthoxylum chalybeum,andLantana trifolia) used traditionally in the management of oral diseases against oral pathogens. Chemical compositions of the oils were explored by GC-MS. Inhibitory effects of the oils were assessed on periodontopathicPorphyromonas gingivalisandAggregatibacter actinomycetemcomitansand cariogenicStreptococcus mutansandLactobacillus acidophilususing broth dilution methods at concentrations of 1%, 0.1%, and 0.01%. The most sensitive organism wasA. actinomycetemcomitans. Its growth was markedly inhibited by six of the oils at all the concentrations tested. Essential oil fromC. nardusexhibited the highest activity with complete growth inhibition ofA. actinomycetemcomitansandP. gingivalisat all the three concentrations tested, the major constituents in the oil being mainly oxygenated sesquiterpenes. Most of the oils exhibited limited effects onL. acidophilus. We conclude that essential oils from the studied plants show marked growth inhibitory effects on periodontopathicA. actinomycetemcomitansandP. gingivalis, moderate effects on cariogenicS. mutans, and the least effect onL. acidophilus. The present study constitutes a basis for further investigations and development of certain oils into alternative antiplaque agents.


2014 ◽  
Vol 30 (9) ◽  
pp. e238-e244 ◽  
Author(s):  
Éfani C.F. Banzi ◽  
Ana R. Costa ◽  
Regina M. Puppin-Rontani ◽  
Jegdish Babu ◽  
Franklin García-Godoy

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Saaya Matayoshi ◽  
Ryota Nomura ◽  
Takahiro Kitamura ◽  
Rena Okawa ◽  
Kazuhiko Nakano

AbstractThe oral environment affects not only oral health, but also general health, and the importance of oral self-care has recently been recognised. Although toothbrushes are the most important self-care product, there are few toothbrushes that have an inhibitory effect on oral bacteria. In the present study, monofilaments used for toothbrushes containing surface pre-reacted glass-ionomer (S-PRG) filler (a component recently applied to various dental materials) were developed. Among nylon and polyester monofilaments commonly used for toothbrushes, nylon monofilaments can accommodate more S-PRG filler than polyester monofilaments, resulting in greater release of ions from the S-PRG filler. These monofilaments containing S-PRG filler formed less biofilm containing Streptococcus mutans, a major pathogen of dental caries, than monofilaments without S-PRG filler. Moreover, S. mutans adhering to monofilaments containing S-PRG filler were more easily exfoliated and eliminated than those adhering to monofilaments without S-PRG filler. Such inhibitory effects on S. mutans were more marked in nylon monofilaments than in polyester monofilaments. These findings that monofilaments containing S-PRG filler can release ions and have an inhibitory effect on S. mutans suggest that they may be an effective material for toothbrushes.


Sign in / Sign up

Export Citation Format

Share Document