scholarly journals Promotion of gastric tumor initiating cells in a 3D collagen gel culture model via YBX1/SPP1/NF-κB signaling

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shuangya Deng ◽  
Lun Li ◽  
Shu Xu ◽  
Xiaobo Wang ◽  
Tong Han

Abstract Background The high potential for tumor recurrence and chemoresistance is a major challenge of clinical gastric cancer treatment. Increasing evidence suggests that the presence of tumor initiating cells (TICs) is the principal cause of tumor recurrence and chemoresistance. However, the underlying mechanism of TIC development remains controversial. Methods To identify novel molecular pathways in gastric cancer, we screened the genomic expression profile of 155 gastric cancer patients from the TCGA database. We then described an improved 3D collagen I gels and tested the effects of collagen on the TIC phenotype of gastric cells using colony formation assay, transwell assay, and nude mouse models. Additionally, cell apoptosis assay was performed to examine the cytotoxicity of 5-fluorine and paclitaxel on gastric cancer cells cultured in 3D collagen I gels. Results Elevated expression of type I collagen was observed in tumor tissues from high stage patients (stage T3–T4) when compared to the low stage group (n=10, stage T1–T2). Furthermore, tumor cells seeded in a low concentration of collagen gels acquired TIC-like phenotypes and revealed enhanced resistance to chemotherapeutic agents, which was dependent on an integrin β1 (ITGB1)/Y-box Binding Protein 1 (YBX1)/Secreted Phosphoprotein 1 (SPP1)/NF-κB signaling pathway. Importantly, inhibition of ITGB1/NF-κB signaling efficiently reversed the chemoresistance induced by collagen and promoted anticancer effects in vivo. Conclusions Our findings demonstrated that type I collagen promoted TIC-like phenotypes and chemoresistance through ITGB1/YBX1/SPP1/NF-κB pathway, which may provide novel insights into gastric cancer therapy.

Author(s):  
Adeel Ahmed ◽  
Indranil M. Joshi ◽  
Mehran Mansouri ◽  
Nuzhet N.N. Ahamed ◽  
Meng-Chun Hsu ◽  
...  

It is well-known that biophysical properties of the extracellular matrix (ECM) in- including, stiffness, porosity, composition, and fiber alignment (anisotropy) play a crucial role in controlling cell behavior in vivo. Type I collagen (collagen I) is a ubiquitous structural component in the ECM and has become a popular hydrogel material that can be tuned to replicate the mechanical properties found in vivo. In this review article, we describe popular methods to create 2D and 3D collagen I hydrogels with anisotropic fiber architectures. We focus on methods that can be readily translated from engineering and materials science laboratories to the life science community with the overall goal of helping to increase the physiological relevance of cell culture assays.


2000 ◽  
Vol 7 (6) ◽  
pp. 885-892 ◽  
Author(s):  
Koga Komatsu ◽  
Susumu Suzuki ◽  
Tooru Shimosegawa ◽  
Jun-ichi Miyazaki ◽  
Takayoshi Toyota

2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Martin Liu ◽  
Angelos Karagiannis ◽  
Matthew Sis ◽  
Srivatsan Kidambi ◽  
Yiannis Chatzizisis

Objectives: To develop and validate a 3D in-vitro model of atherosclerosis that enables direct interaction between various cell types and/or extracellular matrix. Methods and Results: Type I collagen (0.75 mg/mL) was mixed with human artery smooth muscle cells (SMCs; 6x10 5 cells/mL), medium, and water. Human coronary artery endothelial cells (HCAECs; 10 5 /cm 2 ) were plated on top of the collagen gels and activated with oxidized low density lipoprotein cholesterol (LDL-C). Monocytes (THP-1 cells; 10 5 /cm 2 ) were then added on top of the HCAECs. Immunofluorescence showed the expression of VE-cadherin by HCAECs (A, B) and α-smooth muscle actin by SMCs (A). Green-labelled LDL-C particles were accumulated in the subendothelial space, as well as in the cytoplasm of HCAECs and SMCs (C). Activated monocytes were attached to HCAECs and found in the subendothelial area (G-I). Both HCAECs and SMCs released IL-1β, IL-6, IL-8, PDGF-BB, TGF-ß1, and VEGF. Scanning and transmission electron microscopy showed the HCAECs monolayer forming gap junctions and the SMCs (D-F) and transmigrating monocytes within the collagen matrix (G-I). Conclusions: In this work, we presented a novel, easily reproducible and functional in-vitro experimental model of atherosclerosis that has the potential to enable in-vitro sophisticated molecular and drug development studies.


2014 ◽  
Vol 306 (11) ◽  
pp. L1006-L1015 ◽  
Author(s):  
Tetsu Kobayashi ◽  
HuiJung Kim ◽  
Xiangde Liu ◽  
Hisatoshi Sugiura ◽  
Tadashi Kohyama ◽  
...  

Matrix metalloproteinase-9 (MMP-9) is a matrix-degrading enzyme implicated in many biological processes, including inflammation. It is produced by many cells, including fibroblasts. When cultured in three-dimensional (3D) collagen gels, fibroblasts contract the surrounding matrix, a function that is thought to model the contraction that characterizes both normal wound repair and fibrosis. The current study was designed to evaluate the role of endogenously produced MMP-9 in fibroblast contraction of 3D collagen gels. Fibroblasts from mice lacking expression of MMP-9 and human lung fibroblasts (HFL-1) transfected with MMP-9 small-interfering RNA (siRNA) were used. Fibroblasts were cast into type I collagen gels and floated in culture medium with or without transforming growth factor (TGF)-β1 for 5 days. Gel size was determined daily using an image analysis system. Gels made from MMP-9 siRNA-treated human fibroblasts contracted less than control fibroblasts, as did fibroblasts incubated with a nonspecific MMP inhibitor. Similarly, fibroblasts cultured from MMP-9-deficient mice contracted gels less than did fibroblasts from control mice. Transfection of the MMP-9-deficient murine fibroblasts with a vector expressing murine MMP-9 restored contractile activity to MMP-9-deficient fibroblasts. Inhibition of MMP-9 reduced active TGF-β1 and reduced several TGF-β1-driven responses, including activity of a Smad3 reporter gene and production of fibronectin. Because TGF-β1 also drives fibroblast gel contraction, this suggests the mechanism for MMP-9 regulation of contraction is through the generation of active TGF-β1. This study provides direct evidence that endogenously produced MMP-9 has a role in regulation of tissue contraction of 3D collagen gels mediated by fibroblasts.


2014 ◽  
Vol 8 (4) ◽  
pp. 212-216 ◽  
Author(s):  
Kyohei Fukuda ◽  
Yo Kamoshida ◽  
Taisuke Kurokawa ◽  
Mioto Yoshida ◽  
Yoko Fujita-Yamaguchi ◽  
...  

1991 ◽  
Vol 99 (3) ◽  
pp. 641-649 ◽  
Author(s):  
A. Marriott ◽  
S. Ayad ◽  
M.E. Grant

Chondrocytes were isolated from bovine growth-plate cartilage and cultured within type I collagen gels. A major collagen with chains of Mr 59,000, decreasing to 47,000 on pepsinization, was synthesized and identified as type X collagen. This collagen was cleaved at two sites by mammalian collagenase, resulting in a major triple-helical fragment with chains of Mr 32,000. The species of Mr 59,000, 47,000 and 32,000 were not detected by SDS-polyacrylamide gel electrophoresis before reduction, indicating the presence of disulphide bonds within the triple helix. In contrast, similar biosynthetic studies with human growth-plate cartilage in organ culture, indicated that human type X collagen does not contain disulphide bonds. A polyclonal antiserum was raised to bovine type X collagen and used in immunolocalization studies to provide direct evidence for the association of type X collagen with the hypertrophic chondrocytes in both bovine and human growth plates during development.


Development ◽  
1988 ◽  
Vol 102 (3) ◽  
pp. 605-622 ◽  
Author(s):  
G. Greenburg ◽  
E.D. Hay

In considering the mechanism of transformation of epithelium to mesenchyme in the embryo, it is generally assumed that the ability to give rise to fibroblast-like cells is lost as epithelia mature. We reported previously that a definitive embryonic epithelium, that of the anterior lens, gives rise to freely migrating mesenchyme-like cells when suspended in type I collagen matrices. Here, we show that a highly differentiated epithelium that expresses cytokeratin changes to a vimentin cytoskeleton and loses thyroglobulin during epithelial-mesenchymal transformation induced by suspension in collagen gel. Using dispase and collagenase, we isolated adult thyroid follicles devoid of basal lamina and mesenchyme, and we suspended the follicles in 3D collagen gels. Cells bordering the follicle lumen retain epithelial polarity and thyroid phenotype, but basal cell surface organization is soon modified as a result of tissue multilayering and elongation of basal cells into the collagenous matrix. Cytodifferentiation, determined by thyroglobulin immunoreactivity, is lost as the basal epithelial cells move into the matrix after 3–4 days in collagen. By TEM, it can be seen that the elongating cells acquire pseudopodia, filopodia and mesenchyme-like nuclei and RER. Immunofluorescence examination of intermediate filaments showed that freshly isolated follicles and follicles cultured on planar substrata react only with anticytokeratin. However, all of the mesenchyme-like cells express vimentin and they gradually lose cytokeratin. These results suggest that vimentin may be necessary for cell functions associated with migration within a 3D matrix. The mesenchymal cells do not revert to epithelium when grown on planar substrata and the transformation of epithelium to mesenchyme-like cells does not occur within basement membrane gels. The results are relevant to our understanding of the initiation of epithelial-mesenchymal transformation in the embryo and the genetic mechanisms controlling cell shape, polarity and cytoskeletal phenotype.


2000 ◽  
Author(s):  
David I. Shreiber ◽  
Paul A. J. Enever ◽  
Robert T. Tranquillo

Abstract We used our novel assays of cell behavior in tissue equivalents to study the dose-response effects of PDGF-BB on RDF migration and traction in mechanically stressed and stress-free type I collagen and fibrin gels. PDGF-BB increased fibroblast migration significantly in all assays, but the effects on traction depended on the presence of stress and the nature of the ECM. PDGF-BB decreased fibroblast traction in stressed collagen gels, but increased traction in stress-free gels. No statistical conclusion could be inferred for stressed fibrin gels, and increasing PDGF-BB decreased traction in stress-free fibrin gels. These results demonstrate the complex response of fibroblasts to environmental cues, and point to opportunities to orchestrate cell behavior to affect the outcome of wound healing.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Senthilkumar Muthusamy ◽  
Asha V Nath ◽  
Shilpa Ajit ◽  
Anil K PR

Introduction: Use of cardiac mesenchymal cells (CMCs) has been shown to improve cardiac function following myocardial infarction. Main drawback in cardiac cell therapy is the major loss of injected cells within few hours. Increase the retention of these injected cells could increase their efficacy, where cardiac patches with various cell types showed better outcome. Among, collagen patch plays lead role as a cell-laden matrix in cardiac tissue engineering. Creating a detailed understanding of how collagen matrix changes the cellular phenotype could provide seminal insights to regeneration therapy. Hypothesis: Growing CMCs in three dimensional (3D) collagen matrix could alter the expression of extracellular matrix (ECM) and adhesion molecules, which may enhance their efficacy. Methods: The bovine type I collagen was chemically modified and solubilized in culture medium with photo-initiator. The mouse CMCs were isolated and resuspended in collagen solution, printed using 3D bioprinter and UV-crosslinked to form 3D-CMC construct. The 3D-CMC construct was submerged in growth medium and cultured for 48h and analyzed for the expression of ECM and adhesion molecules (n=5/group). CMCs cultured in regular plastic tissue culture dish was used as control. Results: RT profiler array showed changes in the ECM and adhesion molecules expression, specifically certain integrins and matrix metalloproteinases (MMPs) in CMCs cultured 3D collagen construct compared to 2D monolayer. Subsequent qRT-PCR analysis revealed significant (p<0.01) upregulation of integrins such as Itga2 (2.96±0.13), Itgb1 (3.18±0.2) and Itgb3 (2.4±0.27) and MMPs such as MMP13 (37.2±3.36), MMP9 (5.23±1.06) and MMP3 (7.14±2.07). Western blot analysis further confirmed significant elevation of these integrins and matrix metalloproteinases at protein level. Collagen encapsulation did not alter the expression of N-cadherin in CMCs, which is a potential mesenchymal cadherin adhesion molecule. Conclusion: Integrin αβ heterodimers transduce signals that facilitate cell homing, migration, survival and differentiation. Similarly, MMPs plays vital role in cell migration and proliferation. Our results demonstrate that the 3D-collagen Niche enhances the expression of certain integrins and MMPs in CMCs. This suggest that the efficacy of CMCs could be magnified by providing 3D architecture with collagen matrix and further in vivo experiments would reveal functional benefits from CMCs for clinical use.


Sign in / Sign up

Export Citation Format

Share Document