scholarly journals MiR-155-5p suppresses SOX1 to promote proliferation of cholangiocarcinoma via RAF/MEK/ERK pathway

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Da Wang ◽  
Fei Xiong ◽  
Guanhua Wu ◽  
Wenzheng Liu ◽  
Bing Wang ◽  
...  

Abstract Background Accumulating evidence has demonstrated the close relation of SOX1 with tumorigenesis and tumor progression. Upregulation of SOX1 was recently shown to suppress growth of human cancers. However, the expression and role of SOX1 in cholangiocarcinoma (CCA) is not well characterized. Methods Expression levels of SOX1 in CCA tissues and normal bile duct tissues were examined using public GEO database. Western blot and immunohistochemistry were used to confirm the expression levels. Cell proliferation assay (CCK-8) and colony formation assay were performed to assess proliferation of CCA cells. A mouse model of subcutaneous transplantable tumors was used to evaluated proliferation of CCA in vivo. The putative regulating factor of SOX1 were determined using Targetscan and dual-luciferase reporter assay. Results SOX1 was downregulated in CCA tissues. Overexpression of SOX1 significantly inhibited cell proliferation in vitro and suppressed tumor growth in vivo. miR-155-5p directly targeted the 3′-untranslated region (3′UTR) of SOX1 and inhibited expression of SOX1, resulting in the activation of RAF, MEK and ERK phosphorylation, and thus CCA proliferation. However, restoration of SOX1 expression in miR-155-5p overexpressing cell lines decreased the phosphorylation level of RAF, MEK and ERK, as well as the proliferation of CCA cells. Conclusion MiR-155-5p decreased the expression of SOX1 by binding to its 3′UTR, which activated the RAF/MEK/ERK signaling pathway and promoted CCA progression.

2021 ◽  
Author(s):  
Da Wang ◽  
Fei Xiong ◽  
Guanhua Wu ◽  
Wenzheng Liu ◽  
Bing Wang ◽  
...  

Abstract BackgroundAccumulating evidences indicate that SOX1 is closely related to tumorigenesis and development, upregulation of SOX1 is recently reported to suppress growth of human cancers. However, the expression and role of SOX1 in cholangiocarcinoma (CCA) remain unknown.MethodsThe expression levels of SOX1 in CCA tissues and normal bile duct tissues were examined by public GEO database, and western blot and immunohistochemistry were used to confirm the expression again. Cell proliferation assay (CCK-8) and colony formation assay were performed to determine proliferation of CCA cells. A model of transplatable subcutaneously tumors in mouse was used to evaluated proliferation of CCA in vivo. The putative regulating factor of SOX1 were disclosed by Targetscan and a dual-luciferase reporter assay.ResultsSOX1 was downregulated in CCA tissues. Overexpression of SOX1 significantly inhibited cell proliferation in vitro and tumor growth in vivo. Furthermore, miR-155-5p directly targets 3’UTR of SOX1 and inhibits expression of SOX1, resulting in the activation of RAF, MEK and ERK phosphorylation and thus CCA proliferation. However, when SOX1 expression was restored in miR-155-5p overexpressing cell lines, the phosphorylation level of RAF, MEK and ERK were decreased, as well as the proliferation of CCA cells.ConclusionMiR-155-5p could bind to the 3’UTR of SOX1 to decrease the expression of SOX1, and further activated the RAF/MEK/ERK signaling pathway to promote CCA progression.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yarong Guo ◽  
Bao Chai ◽  
Junmei Jia ◽  
Mudan Yang ◽  
Yanjun Li ◽  
...  

Abstract Objective Dysregulation of KLF7 participates in the development of various cancers, but it is unclear whether there is a link between HCC and aberrant expression of KLF7. The aim of this study was to investigate the role of KLF7 in proliferation and migration of hepatocellular carcinoma (HCC) cells. Methods CCK8, colony growth, transwell, cell cycle analysis and apoptosis detection were performed to explore the effect of KLF7, VPS35 and Ccdc85c on cell function in vitro. Xenografted tumor growth was used to assess in vivo role of KLF7. Chip-qPCR and luciferase reporter assays were applied to check whether KLF7 regulated VPS35 at transcriptional manner. Co-IP assay was performed to detect the interaction between VPS35 and Ccdc85c. Immunohistochemical staining and qRT-PCR analysis were performed in human HCC sampels to study the clinical significance of KLF7, VPS35 and β-catenin. Results Firstly, KLF7 was highly expressed in human HCC samples and correlated with patients’ differentiation and metastasis status. KLF7 overexpression contributed to cell proliferation and invasion of HCC cells in vitro and in vivo. KLF7 transcriptional activation of VPS35 was necessary for HCC tumor growth and metastasis. Further, co-IP studies revealed that VPS35 could interact with Ccdc85c in HCC cells. Rescue assay confirmed that overexpression of VPS35 and knockdown of Ccdc85c abolished the VPS35-medicated promotion effect on cell proliferation and invasion. Finally, KLF7/VPS35 axis regulated Ccdc85c, which involved in activation of β-catenin signaling pathway, confirmed using β-catenin inhibitor, GK974. Functional studies suggested that downregulation of Ccdc85c partly reversed the capacity of cell proliferation and invasion in HCC cells, which was regulated by VPS35 upregulation. Lastly, there was a positive correlation among KLF7, VPS35 and active-β-catenin in human HCC patients. Conclusion We demonstrated that KLF7/VPS35 axis promoted HCC cell progression by activating Ccdc85c-medicated β-catenin pathway. Targeting this signal axis might be a potential treatment strategy for HCC.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Fengjie Jiang ◽  
Xiaozhu Tang ◽  
Chao Tang ◽  
Zhen Hua ◽  
Mengying Ke ◽  
...  

AbstractN6-methyladenosine (m6A) modification is the most prevalent modification in eukaryotic RNAs while accumulating studies suggest that m6A aberrant expression plays an important role in cancer. HNRNPA2B1 is a m6A reader which binds to nascent RNA and thus affects a perplexing array of RNA metabolism exquisitely. Despite unveiled facets that HNRNPA2B1 is deregulated in several tumors and facilitates tumor growth, a clear role of HNRNPA2B1 in multiple myeloma (MM) remains elusive. Herein, we analyzed the function and the regulatory mechanism of HNRNPA2B1 in MM. We found that HNRNPA2B1 was elevated in MM patients and negatively correlated with favorable prognosis. The depletion of HNRNPA2B1 in MM cells inhibited cell proliferation and induced apoptosis. On the contrary, the overexpression of HNRNPA2B1 promoted cell proliferation in vitro and in vivo. Mechanistic studies revealed that HNRNPA2B1 recognized the m6A sites of ILF3 and enhanced the stability of ILF3 mRNA transcripts, while AKT3 downregulation by siRNA abrogated the cellular proliferation induced by HNRNPA2B1 overexpression. Additionally, the expression of HNRNPA2B1, ILF3 and AKT3 was positively associated with each other in MM tissues tested by immunohistochemistry. In summary, our study highlights that HNRNPA2B1 potentially acts as a therapeutic target of MM through regulating AKT3 expression mediated by ILF3-dependent pattern.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Xinchao Deng ◽  
Congzhe Hou ◽  
Zhen Liang ◽  
Huali Wang ◽  
Lin Zhu ◽  
...  

Background. MicroRNA-202 (miR-202) has been reported to be aberrantly regulated in several cancers. The aim of this study is to explore the functional role of miR-202 in EAC tumor growth. Material and Methods. miR-202 expression was detected by qRT-PCR. TargetScan and luciferase reporter assay were used to elucidate the candidate target gene of miR-202. The FOXR2 protein level was assessed by Western blot and immunohistochemistry. Survival analysis was explored for FOXR2 expression in EAC patients. Results. miR-202 expression was significantly decreased in EAC tissues (P<0.01) compared with that in control tissues. And the downregulate miR-202 was significantly associated with poor prognosis (P<0.01). Re-expression of miR-202 dramatically suppressed cell proliferation in vitro and tumor growth in vivo. FOXR2 was identified as a direct target of miR-202. In EAC tissues, FOXR2 was upregulated and the increased FOXR2 was significantly associated with poor prognosis. In miR-202-transfected cells, the FOXR2 expression was inversely changed. The analysis of FOXR2 protein expression and miR-202 transcription in EAC tissues showed negative correlation (R=−0.429). Conclusion. miR-202 may function as a tumor suppressor in EAC tumor growth by targeting FOXR2 oncogene, which may provide new insights into the molecular mechanism and new targets for treatment of EAC.


2021 ◽  
Author(s):  
Zhang Jieling ◽  
Li Kai ◽  
Zheng Huifen ◽  
Zhu Yiping

Abstract Background: MicroRNAs play an important role in the genesis and progression of tumors, including colorectal cancer (CRC), which has a high morbidity and mortality rate. In this research, the role of miR-495-3p and HMGB1 in CRC was investigated.Methods: We performed qRT-PCR to detect the expression of miR-495-3p in colorectal cancer tissues and cell lines. Functional experiments such as CCK-8 assay, EDU assay, Transwell assay and apoptosis assay were conducted to explore the effects of miR-495-3p on the proliferation, migration and apoptosis of CRC cells in vitro. Then, the use of database prediction, dual-luciferase reporter gene assay and functional experiments verified the role of miR-495-3p target gene HMGB1 in CRC. Finally, rescue experiments was performed to investigate whether overexpression of HMGB1 could reverse the inhibitory effect of miR-495-3p on CRC cell proliferation in vivo and in vitro.Results: miR-495-3p was down-regulated in colorectal cancer tissues and cell lines, and could inhibit the proliferation and migration of colorectal cancer cells, and promote cell apoptosis. The database prediction and dual-luciferase reporter gene assay showed that HMGB1 was the downstream target gene of miR-495-3p. We finally demonstrated that miR-495-3p inhibited CRC cell proliferation by targeting HMGB1 in vitro and in vivo.Conclusion: Our research shows that miR-495-3p inhibits the progression of colorectal cancer by down-regulating the expression of HMGB1, which indicates that miR-495-3p may become a potential therapeutic target for colorectal cancer.


2021 ◽  
Author(s):  
kunwei niu ◽  
Shibin Qu ◽  
Xuan Zhang ◽  
Jimin Dai ◽  
Jianlin Wang ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) is often diagnosed at a late stage, when the prognosis is poor. The regulation of long non-coding RNAs (lncRNAs) plays a crucial role in HCC. However, the precise regulatory mechanisms of lncRNA signaling in HCC remain largely unknown. We study aim to investigate the underlying mechanisms of lncRNA (upregulated in hepatocellular carcinoma) URHC in HCC. Methods: RT-qPCR, fluorescence in situ hybridization (FISH) staining, EdU, colony formation, and tumor xenografts experiments were used to identify localized and biological effects of URHC on HCC cells in vitro and in vivo. The bioinformatics analysis, Dual-luciferase reporter assay, and rescue experiments revealed the potential mechanism of URHC.Results: URHC silencing may inhibit the HCC cells proliferation in vitro and in vivo. We found that URHC was mainly localized in the cytoplasm. The expression of miR-5007-3p was negatively regulated by URHC. And miR-5007-3p could reverse the effect of URHC in HCC cells. The expression of DNAJB9 was negatively regulated by miR-5007-3p but positively regulated by URHC. These suggesting of lncRNA-URHC positively regulated the level of DNAJB9 by sponging miR-5007-3p.Conclusion: Together, our study elucidated the role of URHC as a miRNA sponge in HCC, and shed new light on lncRNA-directed diagnostics and therapeutics in HCC.


2020 ◽  
Vol 20 (10) ◽  
pp. 1197-1208
Author(s):  
Zhuo Ma ◽  
Kai Li ◽  
Peng Chen ◽  
Qizheng Pan ◽  
Xuyang Li ◽  
...  

Background: Osteosarcoma (OS) is a prevalent primary bone malignancy and its distal metastasis remains the main cause of mortality in OS patients. MicroRNAs (miRNAs) play critical roles during cancer metastasis. Objective: Thus, elucidating the role of miRNA dysregulation in OS metastasis may provide novel therapeutic targets. Methods: The previous study found a low miR-134 expression level in the OS specimens compared with paracancer tissues. Overexpression of miR-134 stable cell lines was established. Cell viability assay, cell invasion and migration assay and apoptosis assay were performed to evaluate the role of miR-134 in OS in vitro. Results: We found that miR-134 overexpression inhibits cell proliferation, migration and invasion, and induces cell apoptosis in both MG63 and Saos-2 cell lines. Mechanistically, miR-134 targets the 3'-UTR of VEGFA and MYCN mRNA to silence its translation, which was confirmed by luciferase-reporter assay. The real-time PCR analysis illustrated that miR-134 overexpression decreases VEGFA and MYCN mRNA levels. Additionally, the overexpression of VEGFA or MYCN can partly attenuate the effects of miR-134 on OS cell migration and viability. Furthermore, the overexpression of miR-134 dramatically inhibits tumor growth in the human OS cell line xenograft mouse model in vivo. Moreover, bioinformatic and luciferase assays indicate that the expression of miR-134 is regulated by Interferon Regulatory Factor (IRF1), which binds to its promoter and activates miR-134 expression. Conclusion: Our study demonstrates that IRF1 is a key player in the transcriptional control of miR-134, and it inhibits cell proliferation, invasion and migration in vitro and in vivo via targeting VEGFA and MYCN.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Lei Zhang ◽  
Ranran Yu ◽  
Chunhua Li ◽  
Yu Dang ◽  
Xiaoyu Yi ◽  
...  

Abstract Background Emerging evidence reveals that the initiation and development of human cancers, including colorectal cancer (CRC), are associated with the deregulation of circular RNAs (circRNAs). Our study intended to disclose the role of circ_0026416 in the malignant behaviors of CRC. Methods The detection for circ_0026416 expression, miR-545-3p expression, and myosin VI (MYO6) mRNA expression was performed using quantitative real-time PCR (qPCR). CCK-8 assay, colony formation assay, transwell assay, and flow cytometry assay were applied for functional analysis to monitor cell proliferation, migration, invasion, and apoptosis. The protein levels of MYO6 and epithelial mesenchymal-transition (EMT) markers were detected by western blot. Mouse models were used to determine the role of circ_0026416 in vivo. The potential relationship between miR-545-3p and circ_0026416 or MYO6 was verified by dual-luciferase reporter assay and RIP assay. Results The expression of circ_0026416 was increased in CRC tumor tissues and cell lines. Circ_0026416 downregulation inhibited CRC cell proliferation, colony formation, migration, invasion, and EMT but induced cell apoptosis in vitro, and circ_0026416 knockdown also blocked tumor growth in vivo. MiR-545-3p was a target of circ_0026416, and rescue experiments indicated that circ_0026416 knockdown blocked CRC development by enriching miR-545-3p. In addition, miR-545-3p targeted MYO6 and inhibited MYO6 expression. MiR-545-3p enrichment suppressed CRC cell malignant behaviors by sequestering MYO6. Importantly, circ_0026416 knockdown depleted MYO6 expression by enriching miR-545-3p. Conclusion Circ_0026416 downregulation blocked the development of CRC through depleting MYO6 expression by enriching miR-545-3p. Highlights Circ_0026416 downregulation inhibits CRC development in vitro and in vivo. Circ_0026416 regulates the expression of MYO6 by targeting miR-545-3p. Circ_0026416 governs the miR-545-3p/MYO6 axis to regulate CRC progression.


2022 ◽  
Vol 19 (1) ◽  
Author(s):  
Min Chu ◽  
Yingchao Fan ◽  
Liting Wu ◽  
Xiaoyan Ma ◽  
Jinfeng Sao ◽  
...  

Abstract Purpose This study aimed to explore the role of long non-coding RNA (lncRNA) BDNF-AS in the progression of multiple myeloma (MM). Methods The expression of BDNF-AS, miR-125a-5p, and miR-125b-5p in MM serum and cell lines were detected by quantitative reverse transcriptase PCR (qRT-PCR). The binding relationships between miR-125a/b-5p and BDNF-AS or Bcl-2 were predicted by Starbase and verified by luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Cell proliferation was evaluated by Cell Counting Kit-8 (CCK-8) assay and 5-ethynyl-2′-deoxyuridine (EdU) staining assay. Cell migration was evaluated by wound healing assay. The expression levels of apoptosis-related proteins were evaluated by Western blot analysis. The role of BDNF-AS was also investigated in a xenograft tumor model in vivo. Results BDNF-AS was significantly upregulated, while miR-125a-5p and miR-125b-5p were downregulated in MM serum and corresponding cancer cell lines. Knockdown of BDNF-AS effectively inhibited the proliferation and migration of MM.1S and U266 cells, and co-transfection of miR-125a-5p or miR-125b-5p inhibitor and sh-BDNF-AS enhanced cell proliferation and migration compared with that in sh-BDNF-AS group. Knockdown of miR-125a-5p or miR-125b-5p significantly enhanced the proliferation and migration of MM.1S and U266 cells, and co-transfection of sh-Bcl-2 and miR-125a/b-5p inhibitor inhibited cell proliferation compared with that in miR-125a/b-5p inhibitor group. Moreover, knockdown of BDNF-AS increased the expression levels of apoptosis-related proteins (cleaved caspase 3 and cleaved PARP), while knockdown of miR-125a-5p or miR-125b-5p reduced the expression levels of these apoptosis-related proteins compared with knockdown of BDNF-AS. Furthermore, knockdown of BDNF-AS effectively suppressed MM tumor growth in vivo. Conclusion Our findings revealed that knockdown of BDNF-AS inhibited the progression of MM by targeting the miR-125a/b-5p-Bcl-2 axis, indicating that BDNF-AS might serve as a novel drug target for MM.


Sign in / Sign up

Export Citation Format

Share Document