scholarly journals Application of dried blood spot sample pooling strategies for Plasmodium 18S rRNA biomarker testing to facilitate identification of infected persons in large-scale epidemiological studies

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Ming Chang ◽  
Selena Johnston ◽  
Annette M. Seilie ◽  
Dianna Hergott ◽  
Sean C. Murphy

Abstract Background Plasmodium 18S rRNA is a sensitive biomarker for detecting Plasmodium infection in human blood. Dried blood spots (DBS) are a practical sample type for malaria field studies to collect, store, and transport large quantities of blood samples for diagnostic testing. Pooled testing is a common way to reduce reagent costs and labour. This study examined performance of the Plasmodium 18S rRNA biomarker assay for DBS, improved assay sensitivity for pooled samples, and created graphical user interface (GUI) programmes for facilitating optimal pooling. Methods DBS samples of varied parasite densities from clinical specimens, Plasmodium falciparum in vitro culture, and P. falciparum Armored RNA® were tested using the Plasmodium 18S rRNA quantitative triplex reverse transcription polymerase chain reaction (qRT-PCR) assay and a simplified duplex assay. DBS sample precision, linearity, limit of detection (LoD) and stability at varied storage temperatures were evaluated. Novel GUIs were created to model two-stage hierarchy, square matrix, and three-stage hierarchy pooling strategies with samples of varying positivity rates and estimated test counts. Seventy-eight DBS samples from persons residing in endemic regions with sub-patent infections were tested in pools and deconvoluted to identify positive cases. Results Assay performance showed linearity for DBS from 4 × 107 to 5 × 102 parasites/mL with strong correlation to liquid blood samples (r2 > 0.96). There was a minor quantitative reduction in DBS rRNA copies/mL compared to liquid blood samples. Analytical sensitivity for DBS was estimated 5.3 log copies 18S rRNA/mL blood (28 estimated parasites/mL). Properly preserved DBS demonstrated minimal degradation of 18S rRNA when stored at ambient temperatures for one month. A simplified duplex qRT-PCR assay omitting the human mRNA target showed improved analytical sensitivity, 1 parasite/mL blood, and was optimized for pooling. Optimal pooling sizes varied depending on prevalence. A pilot DBS study of the two-stage hierarchy pooling scheme corroborated results previously determined by testing individual DBS. Conclusions The Plasmodium 18S rRNA biomarker assay can be applied to DBS collected in field studies. The simplified Plasmodium qRT-PCR assay and GUIs have been established to provide efficient means to test large quantities of DBS samples.

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Claire Y. T. Wang ◽  
Emma L. Ballard ◽  
Zuleima Pava ◽  
Louise Marquart ◽  
Jane Gaydon ◽  
...  

Abstract Background Volunteer infection studies have become a standard model for evaluating drug efficacy against Plasmodium infections. Molecular techniques such as qPCR are used in these studies due to their ability to provide robust and accurate estimates of parasitaemia at increased sensitivity compared to microscopy. The validity and reliability of assays need to be ensured when used to evaluate the efficacy of candidate drugs in clinical trials. Methods A previously described 18S rRNA gene qPCR assay for quantifying Plasmodium falciparum in blood samples was evaluated. Assay performance characteristics including analytical sensitivity, reportable range, precision, accuracy and specificity were assessed using experimental data and data compiled from phase 1 volunteer infection studies conducted between 2013 and 2019. Guidelines for validation of laboratory-developed molecular assays were followed. Results The reportable range was 1.50 to 6.50 log10 parasites/mL with a limit of detection of 2.045 log10 parasites/mL of whole blood based on a parasite diluted standard series over this range. The assay was highly reproducible with minimal intra-assay (SD = 0.456 quantification cycle (Cq) units [0.137 log10 parasites/mL] over 21 replicates) and inter-assay (SD = 0.604 Cq units [0.182 log10 parasites/mL] over 786 qPCR runs) variability. Through an external quality assurance program, the QIMR assay was shown to generate accurate results (quantitative bias + 0.019 log10 parasites/mL against nominal values). Specificity was 100% after assessing 164 parasite-free human blood samples. Conclusions The 18S rRNA gene qPCR assay is specific and highly reproducible and can provide reliable and accurate parasite quantification. The assay is considered fit for use in evaluating drug efficacy in malaria clinical trials.


2003 ◽  
Vol 49 (9) ◽  
pp. 1467-1475 ◽  
Author(s):  
Marcy B Grace ◽  
Christopher B McLeland ◽  
Steven J Gagliardi ◽  
Jeffrey M Smith ◽  
William E Jackson ◽  
...  

Abstract Background: High-throughput and forward-deployable biological dosimetry capabilities are required for tactical and medical decisions after radiologic events. We previously reported a quantitative reverse transcription (QRT)-PCR assay for human radiation-responsive gene targets using a whole-blood ex vivo irradiation model, but we needed a multitarget assay on a smaller, less costly, real-time PCR detection system. Methods: We developed a quadruplex QRT-PCR assay in a 96-well, closed-plate format suitable for use with RNA extracted from whole blood. Four cDNA targets were simultaneously amplified in a sealed tube by hybridization to exonuclease probes, each conjugated to distinct fluorogenic reporters. A novel primer-limited 18S rRNA reference target was validated from serial dilutions of human total RNA. To test assay precision, we incorporated a positive-control cDNA mimic into duplex and quadruplex PCR reactions. The master mixture was supplemented with more enzyme, MgCl2, and deoxyribonucleotides. Simultaneous detection of four targets was evaluated in comparison with respective duplex QRT-PCR assays. Results: The simultaneous detection of three radiation-responsive genes by quadruplex QRT-PCR was quantitative, with gene expression changes similar to those observed with optimized duplex and triplex QRT-PCR assays. The 18S rRNA and GADD45 calibration curves (threshold cycle vs log10 cDNA) were linear and reproducible and showed optimal PCR efficiencies as indicated by slopes statistically equivalent to the theoretical value of −3.322. Conclusions: This is the first study of a quadruplex QRT-PCR assay. Our approach has diagnostic utility in the detection of biomarkers, biological and toxicologic agents, and genes of inherited diseases and cancer.


2013 ◽  
Vol 142 (7) ◽  
pp. 1495-1500 ◽  
Author(s):  
W. H. M. VAN DER POEL ◽  
J. M. PARLEVLIET ◽  
E. R. A. M. VERSTRATEN ◽  
E. A. KOOI ◽  
R. HAKZE-VAN DER HONING ◽  
...  

SUMMARYTo study Schmallenberg virus (SBV) excretion in bovine semen after experimental infection, two bulls were inoculated subcutaneously with a SBV isolate (1 ml Vero cell culture 106 TCID50). After inoculation (at day 0), semen was collected daily from both animals for 21 days and samples were tested for SBV by qRT–PCR assay. At 24 days post-inoculation both animals were subjected to necropsy and the genital organs and lymph nodes draining these organs were also tested for SBV RNA (qRT–PCR). After SBV infection both animals in the study showed viraemia (qRT–PCR) with fever and diarrhoea. SBV RNA could be detected in semen from both animals. The highest SBV RNA concentrations in semen were found in the first week (days 4–7 post-inoculation) but concentrations were relatively low (Ct values 30–39). Viable SBV was only isolated from blood samples and not from semen or genital tissues.


2001 ◽  
Vol 8 (1) ◽  
pp. 123-128 ◽  
Author(s):  
D. Hüssy ◽  
N. Stäuber ◽  
C. M. Leutenegger ◽  
S. Rieder ◽  
M. Ackermann

ABSTRACT A fluorogenic PCR specific for ovine herpesvirus 2 (OvHV-2) DNA was developed and compared to a previously established conventional seminested PCR. Testing of a total of 152 blood samples from both positive and negative animals revealed that the results of both assays corresponded to each other in 100% of the cases. A second fluorogenic PCR for genomic sheep DNA was required to normalize the quantity of viral DNA in the sample. Separate standard curves had to be constructed for each PCR. The analytical sensitivity of the new PCRs ranged between at least 10 copies and sometimes even 1 copy of target DNA per reaction mixture. In dilution series of the target DNAs, linear decreases of the signals were observed over 7 orders of magnitude. Thus, it was possible to calculate the amounts of viral DNA in relation to the amounts of cellular DNA by normalizing the absolute quantity of OvHV-2 DNA with the amount of genomic sheep DNA. By this technique, it was possible for the first time to quantitatively characterize the course of OvHV-2 replication in naturally infected sheep.


2005 ◽  
Vol 49 (11) ◽  
pp. 4437-4442 ◽  
Author(s):  
Xiaomin Cai ◽  
Keith M. Woods ◽  
Steve J. Upton ◽  
Guan Zhu

ABSTRACT We report here on a quantitative real-time reverse transcription-PCR (qRT-PCR) assay for assessing drug efficacy against the intracellular pathogen Cryptosporidium parvum. The qRT-PCR assay detects 18S rRNA transcripts from both parasites, that is, the cycle threshold for 18S rRNA from parasites (CT [P18S]) and host cells (CT [H18S]), and evaluates the relative expression between parasite and host rRNA levels (i.e., ΔCT = CT [P18S] − CT [H18S]) to minimize experimental and operational errors. The choice of qRT-PCR over quantitative PCR (qPCR) in this study is based on the observations that (i) the relationship between the logarithm of infected parasites (log[P]) and the normalized relative level of rRNA (ΔΔCT ) is linear, with a fourfold dynamic range, by qRT-PCR but sigmoidal (nonlinear) by qPCR; and (ii) the level of RNA represents that of live parasites better than that of DNA, because the decay of RNA (99% in ∼3 h) in dead parasites is faster than that of DNA (99% in ∼24 to 48 h) under in vitro conditions. The reliability of the qRT-PCR method was validated by testing the efficacies of nitazoxanide and paromomycin on the development of two strains of C. parvum (IOWA and KSU-1) in HCT-8 cells in vitro. Both compounds displayed dose-dependent inhibitions. The observed MIC50 values for nitazoxanide and paromomycin were 0.30 to 0.45 μg/ml and 89.7 to 119.0 μg/ml, respectively, comparable to the values reported previously. Using the qRT-PCR assay, we have also observed that pyrazole could inhibit C. parvum development in vitro (MIC50 = 15.8 mM), suggesting that the recently discovered Cryptosporidium alcohol dehydrogenases may be explored as new drug targets.


2021 ◽  
Vol 27 (Supplement_1) ◽  
pp. S57-S57
Author(s):  
Edgar Ong ◽  
Ruo Huang ◽  
Richard Kirkland ◽  
Michael Hale ◽  
Larry Mimms

Abstract Introduction A fast (<5 min), time-resolved fluorescence resonance energy transfer (FRET)-based immunoassay was developed for the quantitative detection of infliximab (IFX) and biosimilars for use in therapeutic drug monitoring using only 20 µL of fingerstick whole blood or serum at the point-of-care. The Procise IFX assay and ProciseDx analyzer are CE-marked. Studies were performed to characterize analytical performance of the Procise IFX assay on the ProciseDx analyzer. Methods Analytical testing was performed by spiking known amounts of IFX into negative serum and whole blood specimens. Analytical sensitivity was determined using limiting concentrations of IFX. Linearity was determined by testing IFX across the assay range. Hook effect was assessed at IFX concentrations beyond levels expected to be found within a patient. Testing of assay precision, cross-reactivity and potential interfering substances, and biosimilars was performed. The Procise IFX assay was also compared head-to-head with another CE-marked assay: LISA-TRACKER infliximab ELISA test (Theradiag, France). The accuracy of the Procise IFX assay is established through calibrators and controls traceable to the WHO 1st International Standard for Infliximab (NIBSC code: 16/170). Results The Procise IFX assay shows a Limit of Blank, Limit of Detection, and Lower Limit of Quantitation (LLoQ) of 0.1, 0.2, and 1.1 µg/mL in serum and 0.6, 1.1, and 1.7 µg/mL in whole blood, respectively. The linear assay range was determined to be 1.7 to 77.2 µg/mL in serum and whole blood. No hook effect was observed at an IFX concentration of 200 µg/mL as the value reported as “>ULoQ”. Assay precision testing across 20 days with multiple runs and reagent lots showed an intra-assay coefficient of variation (CV) of 2.7%, an inter-assay CV of <2%, and a total CV of 3.4%. The presence of potentially interfering/cross-reacting substances showed minimal impact on assay specificity with %bias within ±8% of control. Testing of biosimilars (infliximab-dyyb and infliximab-abda) showed good recovery. A good correlation to the Theradiag infliximab ELISA was obtained for both serum (slope=1.01; r=0.99) and whole blood (slope=1.01; r=0.98) samples (Figure 1). Conclusion Results indicate that the Procise IFX assay is sensitive, specific, and precise yielding results within 5 minutes from both whole blood and serum without the operator needing to specify sample type. Additionally, it shows very good correlation to a comparator assay that takes several hours and sample manipulation to yield results. This makes the Procise IFX assay ideal for obtaining fast and accurate IFX quantitation, thus allowing for immediate drug level dosing decisions to be made by the physician during patient treatment.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Yang Zhang ◽  
Chunyang Dai ◽  
Huiyan Wang ◽  
Yong Gao ◽  
Tuantuan Li ◽  
...  

Abstract Background Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, is posing a serious threat to global public health. Reverse transcriptase real-time quantitative polymerase chain reaction (qRT-PCR) is widely used as the gold standard for clinical detection of SARS-CoV-2. Due to technical limitations, the reported positive rates of qRT-PCR assay of throat swab samples vary from 30 to 60%. Therefore, the evaluation of alternative strategies to overcome the limitations of qRT-PCR is required. A previous study reported that one-step nested (OSN)-qRT-PCR revealed better suitability for detecting SARS-CoV-2. However, information on the analytical performance of OSN-qRT-PCR is insufficient. Method In this study, we aimed to analyze OSN-qRT-PCR by comparing it with droplet digital PCR (ddPCR) and qRT-PCR by using a dilution series of SARS-CoV-2 pseudoviral RNA and a quality assessment panel. The clinical performance of OSN-qRT-PCR was also validated and compared with ddPCR and qRT-PCR using specimens from COVID-19 patients. Result The limit of detection (copies/ml) of qRT-PCR, ddPCR, and OSN-qRT-PCR were 520.1 (95% CI: 363.23–1145.69) for ORF1ab and 528.1 (95% CI: 347.7–1248.7) for N, 401.8 (95% CI: 284.8–938.3) for ORF1ab and 336.8 (95% CI: 244.6–792.5) for N, and 194.74 (95% CI: 139.7–430.9) for ORF1ab and 189.1 (95% CI: 130.9–433.9) for N, respectively. Of the 34 clinical samples from COVID-19 patients, the positive rates of OSN-qRT-PCR, ddPCR, and qRT-PCR were 82.35% (28/34), 67.65% (23/34), and 58.82% (20/34), respectively. Conclusion In conclusion, the highly sensitive and specific OSN-qRT-PCR assay is superior to ddPCR and qRT-PCR assays, showing great potential as a technique for detection of SARS-CoV-2 in patients with low viral loads.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Said Incir ◽  
Kerim Erhan Palaoglu

AbstractObjectivesWe performed a verification study of the Sysmex XN-3100 hematology analyzer in comparison with the XE-2100 according to the guidelines of the Clinical and Laboratory Standards Institute (CLSI) and the International Council for Standardization in Hematology (ICSH).Materials and methodsBlood samples and quality control materials were used for precision. For comparison, we used the current XE-2100 as the comparative method and analyzed 540 blood samples. The Passing-Bablok and Bland-Altman tests were performed according to the CLSI EP09-A3 and a carryover study was performed according to the CLSI H26-A2 guidelines. The flagging performance of the two analyzers was compared, using two experienced laboratory technicians as the reference method.ResultsThe Sysmex XN-3100 demonstrated high levels of precision for most parameters. For the comparison analysis, all parameters, except for MCHC, monocytes and basophils were within the systematic error limits of desirable biological variability criterion (SeDBV). The carryover was less than 0.4% for all parameters. The flagging performance of the XN-3100 was satisfactory and the overall efficiency was high.ConclusionsThe XN-3100 not only showed a strong correlation and agreement with the XE-2100 but also displayed a comparable analytical sensitivity, and increased specificity, which may result in an improved turnaround time and throughpu.


2015 ◽  
Vol 53 (12) ◽  
pp. 3935-3937 ◽  
Author(s):  
Daniel Golparian ◽  
Stina Boräng ◽  
Martin Sundqvist ◽  
Magnus Unemo

The new BD Max GC real-time PCR assay showed high clinical and analytical sensitivity and specificity. It can be an effective and accurate supplementary test for the BD ProbeTec GC Qx amplified DNA assay, which had suboptimal specificity, and might also be used for initial detection ofNeisseria gonorrhoeae.


Sign in / Sign up

Export Citation Format

Share Document