scholarly journals Circular RNA circ_0020710 drives tumor progression and immune evasion by regulating the miR-370-3p/CXCL12 axis in melanoma

2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Chuan-Yuan Wei ◽  
Meng-Xuan Zhu ◽  
Nan-Hang Lu ◽  
Jia-Qi Liu ◽  
Yan-Wen Yang ◽  
...  
Cancer ◽  
2010 ◽  
Vol 116 (7) ◽  
pp. 1623-1625 ◽  
Author(s):  
Mohammed Kashani-Sabet

RSC Advances ◽  
2019 ◽  
Vol 9 (67) ◽  
pp. 39294-39303
Author(s):  
Chong Liu ◽  
Lingling Sun ◽  
Jiaying Sun

Recent data indicated that circular RNAs (circRNAs) were implicated in tumor progression including colorectal cancer (CRC). However, the mechanism of hsa_circ_0000467 in CRC remains unclear.


2021 ◽  
Vol 11 ◽  
Author(s):  
Gurcan Gunaydin

Cancer associated fibroblasts (CAFs) and tumor associated macrophages (TAMs) are among the most important and abundant players of the tumor microenvironment. CAFs as well as TAMs are known to play pivotal supportive roles in tumor growth and progression. The number of CAF or TAM cells is mostly correlated with poor prognosis. Both CAFs and TAMs are in a reciprocal communication with the tumor cells in the tumor milieu. In addition to such interactions, CAFs and TAMs are also involved in a dynamic and reciprocal interrelationship with each other. Both CAFs and TAMs are capable of altering each other’s functions. Here, the current understanding of the distinct mechanisms about the complex interplay between CAFs and TAMs are summarized. In addition, the consequences of such a mutual relationship especially for tumor progression and tumor immune evasion are highlighted, focusing on the synergistic pleiotropic effects. CAFs and TAMs are crucial components of the tumor microenvironment; thus, they may prove to be potential therapeutic targets. A better understanding of the tri-directional interactions of CAFs, TAMs and cancer cells in terms of tumor progression will pave the way for the identification of novel theranostic cues in order to better target the crucial mechanisms of carcinogenesis.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Feng Yang ◽  
Anpei Hu ◽  
Yanhua Guo ◽  
Jianqun Wang ◽  
Dan Li ◽  
...  

Abstract Background Metabolic reprogramming sustains tumorigenesis and aggressiveness of neuroblastoma (NB), the most common extracranial malignancy in childhood, while underlying mechanisms and therapeutic approaches still remain elusive. Methods Circular RNAs (circRNAs) were validated by Sanger sequencing. Co-immunoprecipitation, mass spectrometry, chromatin immunoprecipitation (ChIP) sequencing, and RNA sequencing assays were applied to explore protein interaction and target genes. Gene expression regulation was observed by ChIP, dual-luciferase reporter, real-time quantitative RT-PCR, and western blot assays. Gain- and loss-of-function studies were performed to observe the impacts of circRNA-encoded protein and its partners on the lipid metabolism, mitochondrial activity, growth, invasion, and metastasis of NB cells. Results A novel 113-amino acid protein (p113) of CUT-like homeobox 1 (CUX1) was identified in NB cells treated by serum deprivation. Further validating studies revealed that nuclear p113 was encoded by circRNA of CUX1, and promoted the lipid metabolic reprogramming, mitochondrial activity, proliferation, invasion, and metastasis of NB cells. Mechanistically, p113 interacted with Zuotin-related factor 1 (ZRF1) and bromodomain protein 4 (BRD4) to form a transcriptional regulatory complex, and mediated the transactivation of ZRF1/BRD4 in upregulating ALDH3A1, NDUFA1, and NDUFAF5 essential for conversion of fatty aldehydes into fatty acids, fatty acid β-oxidation, and mitochondrial complex I activity. Administration of an inhibitory peptide blocking p113-ZRF1 interaction suppressed the tumorigenesis and aggressiveness of NB cells. In clinical NB cases, high expression of p113, ZRF1, or BRD4 was associated with poor survival of patients. Conclusions These results indicate that p113 isoform encoded by CUX1 circular RNA drives tumor progression via facilitating ZRF1/BRD4 transactivation.


2017 ◽  
Author(s):  
Mohit Kumar Jolly ◽  
Satyendra C Tripathi ◽  
Jason A Somarelli ◽  
Samir M Hanash ◽  
Herbert Levine

AbstractPhenotypic plasticity, the ability of cells to reversibly alter their phenotypes in response to signals, presents a significant clinical challenge to treating solid tumors. Tumor cells utilize phenotypic plasticity to evade therapies, metastasize, and colonize distant organs. As a result, phenotypic plasticity can accelerate tumor progression. A well-studied example of phenotypic plasticity is the bidirectional conversions among epithelial, mesenchymal, and hybrid epithelial/mesenchymal phenotype(s). These conversions can alter a repertoire of cellular traits associated with multiple hallmarks of cancer, such as metabolism, immune-evasion, and invasion and metastasis. To tackle the complexity and heterogeneity of these transitions, mathematical models have been developed that seek to capture the experimentally-verified molecular mechanisms and act as ‘ hypothesis-generating machines’. Here, we discuss how these quantitative mathematical models have helped us explain existing experimental data, guided further experiments, and provided an improved conceptual framework for understanding how multiple intracellular and extracellular signals can drive epithelial-mesenchymal plasticity at both the single-cell and population levels. We also discuss the implications of this plasticity in driving multiple aggressive facets of tumor progression.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Peng-Fei Zhang ◽  
Xu Pei ◽  
Ke-Sang Li ◽  
Li-Na Jin ◽  
Fei Wang ◽  
...  

Abstract Background Immune system evasion, distance tumor metastases, and increased cell proliferation are the main reasons for the progression of non-small cell lung cancer (NSCLC) and the death of NSCLC patients. Dysregulation of circular RNAs plays a critical role in the progression of NSCLC; therefore, further understanding the biological mechanisms of abnormally expressed circRNAs is critical to discovering novel, promising therapeutic targets for NSCLC treatment. Methods The expression of circular RNA fibroblast growth factor receptor 1 (circFGFR1) in NSCLC tissues, paired nontumor tissues, and cell lines was detected by RT-qPCR. The role of circFGFR1 in NSCLC progression was assessed both in vitro by CCK-8, clonal formation, wound healing, and Matrigel Transwell assays and in vivo by a subcutaneous tumor mouse assay. In vivo circRNA precipitation, RNA immunoprecipitation, and luciferase reporter assays were performed to explore the interaction between circFGFR1 and miR-381-3p. Results Here, we report that circFGFR1 is upregulated in NSCLC tissues, and circFGFR1 expression is associated with deleterious clinicopathological characteristics and poor prognoses for NSCLC patients. Forced circFGFR1 expression promoted the migration, invasion, proliferation, and immune evasion of NSCLC cells. Mechanistically, circFGFR1 could directly interact with miR-381-3p and subsequently act as a miRNA sponge to upregulate the expression of the miR-381-3p target gene C-X-C motif chemokine receptor 4 (CXCR4), which promoted NSCLC progression and resistance to anti-programmed cell death 1 (PD-1)- based therapy. Conclusion Taken together, our results suggest the critical role of circFGFR1 in the proliferation, migration, invasion, and immune evasion abilities of NSCLC cells and provide a new perspective on circRNAs during NSCLC progression.


2021 ◽  
Vol 23 (1) ◽  
pp. 64
Author(s):  
Yung-Hung Luo ◽  
Yi-Ping Yang ◽  
Chian-Shiu Chien ◽  
Aliaksandr A. Yarmishyn ◽  
Afeez Adekunle Ishola ◽  
...  

Lung cancer is the leading cause of death from cancer in Taiwan and throughout the world. Immunotherapy has revealed promising and significant efficacy in NSCLC, through immune checkpoint inhibition by blocking programmed cell death protein (PD)-1/PD-1 ligand (PD-L1) signaling pathway to restore patients’ T-cell immunity. One novel type of long, non-coding RNAs, circular RNAs (circRNAs), are endogenous, stable, and widely expressed in tissues, saliva, blood, urine, and exosomes. Our previous results revealed that the plasma level of hsa_circ_0000190 can be monitored by liquid-biopsy-based droplet digital PCR and may serve as a valuable blood-based biomarker to monitor the disease progression and the efficacy of immunotherapy. In this study, hsa_circ_0000190 was shown to increase the PD-L1 mRNA-mediated soluble PD-L1 (sPD-L1) expression, consequently interfering with the efficacy of anti-PD-L1 antibody and T-cell activation, which may result in immunotherapy resistance and poor outcome. Our results unraveled that hsa_circ_0000190 facilitated the tumorigenesis and immune evasion of NSCLC by upregulating sPD-L1 expression, potentially developing a different aspect in elucidating the molecular immunopathogenesis of NSCLC. Hsa_circ_0000190 upregulation can be an effective indicator for the progression of NSCLC, and hsa_circ_0000190 downregulation may possess a potential therapeutic value for the treatment of NSCLC in combination with immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document