scholarly journals Determination of a six-gene prognostic model for cervical cancer based on WGCNA combined with LASSO and Cox-PH analysis

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Shiyan Li ◽  
Fengjuan Han ◽  
Na Qi ◽  
Liyang Wen ◽  
Jia Li ◽  
...  

Abstract Aim This study aimed to establish a risk model of hub genes to evaluate the prognosis of patients with cervical cancer. Methods Based on TCGA and GTEx databases, the differentially expressed genes (DEGs) were screened and then analyzed using GO and KEGG analyses. The weighted gene co-expression network (WGCNA) was then used to perform modular analysis of DEGs. Univariate Cox regression analysis combined with LASSO and Cox-pH was used to select the prognostic genes. Then, multivariate Cox regression analysis was used to screen the hub genes. The risk model was established based on hub genes and evaluated by risk curve, survival state, Kaplan-Meier curve, and receiver operating characteristic (ROC) curve. Results We screened 1265 DEGs between cervical cancer and normal samples, of which 620 were downregulated and 645 were upregulated. GO and KEGG analyses revealed that most of the upregulated genes were related to the metastasis of cancer cells, while the downregulated genes mostly acted on the cell cycle. Then, WGCNA mined six modules (red, blue, green, brown, yellow, and gray), and the brown module with the most DEGs and related to multiple cancers was selected for the follow-up study. Eight genes were identified by univariate Cox regression analysis combined with the LASSO Cox-pH model. Then, six hub genes (SLC25A5, ENO1, ANLN, RIBC2, PTTG1, and MCM5) were screened by multivariate Cox regression analysis, and SLC25A5, ANLN, RIBC2, and PTTG1 could be used as independent prognostic factors. Finally, we determined that the risk model established by the six hub genes was effective and stable. Conclusions This study supplies the prognostic value of the risk model and the new promising targets for the cervical cancer treatment, and their biological functions need to be further explored.

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Jianye Tan ◽  
Haofeng Liang ◽  
Bingsheng Yang ◽  
Shuang Zhu ◽  
Guofeng Wu ◽  
...  

Osteosarcoma (OS) often occurs in children and often undergoes metastasis, resulting in lower survival rates. Information on the complexity and pathogenic mechanism of OS is limited, and thus, the development of treatments involving alternative molecular and genetic targets is hampered. We categorized transcriptome data into metastasis and nonmetastasis groups, and 400 differential RNAs (230 messenger RNAs (mRNAs) and 170 long noncoding RNAs (lncRNAs)) were obtained by the edgeR package. Prognostic genes were identified by performing univariate Cox regression analysis and the Kaplan–Meier (KM) survival analysis. We then examined the correlation between the expression level of prognostic lncRNAs and mRNAs. Furthermore, microRNAs (miRNAs) corresponding to the coexpression of lncRNA-mRNA was predicted, which was used to construct a competitive endogenous RNA (ceRNA) regulatory network. Finally, multivariate Cox proportional risk regression analysis was used to identify hub prognostic genes. Three hub prognostic genes (ABCG8, LOXL4, and PDE1B) were identified as potential prognostic biomarkers and therapeutic targets for OS. Furthermore, transcriptions factors (TFs) (DBP, ESX1, FOS, FOXI1, MEF2C, NFE2, and OTX2) and lncRNAs (RP11-357H14.16, RP11-284N8.3, and RP11-629G13.1) that were able to affect the expression levels of genes before and after transcription were found to regulate the prognostic hub genes. In addition, we identified drugs related to the prognostic hub genes, which may have potential clinical applications. Immunohistochemistry (IHC) and quantitative real-time polymerase chain reaction (qRT-PCR) confirmed that the expression levels of ABCG8, LOXL4, and PDE1B coincided with the results of bioinformatics analysis. Moreover, the relationship between the hub prognostic gene expression and patient prognosis was also validated. Our study elucidated the roles of three novel prognostic biomarkers in the pathogenesis of OS as well as presenting a potential clinical treatment for OS.


2022 ◽  
Author(s):  
Yuying Tan ◽  
Liqing Lu ◽  
Xujun Liang ◽  
Yongheng Chen

Abstract Background: Colon adenocarcinoma (COAD) is one of the most common malignant tumors and diagnosed at an advanced stage with poor prognosis in the world. Pyroptosis is involved in the initiation and progression of tumors. This research focused on constructing a pyroptosis-related ceRNA network to generate a reliable risk model for risk prediction and immune infiltration analysis of COAD.Methods: Transcriptome data, miRNA-sequencing data and clinical information were downloaded from the TCGA database. Firstly, differentially expressed mRNAs (DEmRNAs), miRNAs (DEmiRNAs), and lncRNAs (DElncRNAs) were identified to construct a pyroptosis-related ceRNA network. Secondly, a pyroptosis-related lncRNA risk model was developed applying univariate Cox regression analysis and least absolute shrinkage and selection operator method (LASSO) regression analysis. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses were utilized to functionally annotate RNAs contained in the ceRNA network. In addition, Kaplan-Meier analysis, receiver operating characteristic (ROC) curves, univariate and multivariate Cox regression, and nomogram were applied to validate this risk model. Finally, the relationship of this risk model with immune cells and immune checkpoint blockade (ICB) related genes were analyzed.Results: Totally 5373 DEmRNAs, 1159 DElncRNAs and 355 DEmiRNAs were identified. A pyroptosis-related ceRNA regulatory network containing 132 lncRNAs, 7miRNAs and 5 mRNAs was constructed and a ceRNA-based pyroptosis-related risk model including 11 lncRNAs was built. Tumor tissues were classified into high- and low- risk groups according to the median risk score. Kaplan-Meier analysis showed that the high-risk group had a shorter survival time; ROC analysis, independent prognostic analysis and nomogram further indicated the risk model was a significant independent prognostic factor which had excellent ability to predict patients’ risk. Moreover, immune infiltration analysis indicated that the risk model was related to immune infiltration cells (i.e., B cells naïve, T cells follicular helper, Macrophages M1, etc.) and ICB-related genes (i.e., PD-1, CTLA4, HAVCR2, etc).Conclusions: This pyroptosis-related lncRNA risk model possessed good prognostic value and the ability to predict the outcome of ICB immunotherapy in COAD.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Liang Luo ◽  
Haiyi Zhou ◽  
Hao Su

Abstract Background The tumor microenvironment acts a pivotal part in the occurrence and development of tumor. However, there are few studies on the microenvironment of papillary renal cell carcinoma (PRCC). Our study aims to explore prognostic genes related to tumor microenvironment in PRCC. Methods PRCC expression profiles and clinical data were extracted from The Cancer Gene Atlas (TCGA) and Gene Expression Omnibus (GEO) database. Immune/stromal scores were performed utilizing the ESTIMATE algorithm. Three hundred fifty-seven samples were split into two groups on the basis of median immune/stromal score, and comparison of gene expression was conducted. Intersect genes were obtained by Venn diagrams. Hub genes were selected through protein-protein interaction (PPI) network construction, and relevant functional analysis was conducted by DAVID. We used Kaplan–Meier analysis to identify the correlations between genes and overall survival (OS) and progression-free survival (PFS). Univariate and multivariate cox regression analysis were employed to construct survival model. Cibersort was used to predict the immune cell composition of high and low risk group. Combined nomograms were built to predict PRCC prognosis. Immune properties of PRCC were validated by The Cancer Immunome Atlas (TCIA). Results We found immune/stromal score was correlated with T pathological stages and PRCC subtypes. Nine hundred eighty-nine differentially expressed genes (DEGs) and 1169 DEGs were identified respectively on the basis of immune and stromal score. Venn diagrams indicated that 763 co-upregulated genes and 4 co-downregulated genes were identified. Kaplan-Meier analysis revealed that 120 genes were involved in tumor prognosis. Then PPI network analysis identified 22 hub genes, and four of which were significantly related to OS in patients with PRCC confirmed by cox regression analysis. Finally, we constructed a prognostic nomogram which combined with influence factors. Conclusions Four tumor microenvironment-related genes (CD79A, CXCL13, IL6 and CCL19) were identified as biomarkers for PRCC prognosis.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhengxin Wu ◽  
Jinshui Tan ◽  
Yifan Zhuang ◽  
Mengya Zhong ◽  
Yubo Xiong ◽  
...  

Abstract Background Metabolic reprogramming has been reported in various kinds of cancers and is related to clinical prognosis, but the prognostic role of pyrimidine metabolism in gastric cancer (GC) remains unclear. Methods Here, we employed DEG analysis to detect the differentially expressed genes (DEGs) in pyrimidine metabolic signaling pathway and used univariate Cox analysis, Lasso-penalizes Cox regression analysis, Kaplan–Meier survival analysis, univariate and multivariate Cox regression analysis to explore their prognostic roles in GC. The DEGs were experimentally validated in GC cells and clinical samples by quantitative real-time PCR. Results Through DEG analysis, we found NT5E, DPYS and UPP1 these three genes are highly expressed in GC. This conclusion has also been verified in GC cells and clinical samples. A prognostic risk model was established according to these three DEGs by Univariate Cox analysis and Lasso-penalizes Cox regression analysis. Kaplan–Meier survival analysis suggested that patient cohorts with high risk score undertook a lower overall survival rate than those with low risk score. Stratified survival analysis, Univariate and multivariate Cox regression analysis of this model confirmed that it is a reliable and independent clinical factor. Therefore, we made nomograms to visually depict the survival rate of GC patients according to some important clinical factors including our risk model. Conclusion In a word, our research found that pyrimidine metabolism is dysregulated in GC and established a prognostic model of GC based on genes differentially expressed in pyrimidine metabolism.


2021 ◽  
Author(s):  
Liang Luo ◽  
Haiyi Zhou ◽  
Hao Su

Abstract Background: The tumor microenvironment acts a pivotal part in the occurrence and development of tumor. However, there are few studies on the microenvironment of papillary renal cell carcinoma (PRCC). Our study aims to explore prognostic genes related to tumor microenvironment in PRCC. Methods: PRCC expression profiles and clinical data were extracted from The Cancer Gene Atlas (TCGA) database. Immune/stromal scores were performed utilizing the ESTIMATE algorithm. 323 samples were split into two groups on the basis of median immune/stromal score, and comparison of gene expression were conducted. Cross genes were obtained by Venn diagrams. Hub genes were selected through protein-protein interaction (PPI) network construction, and relevant functional analysis was conducted by DAVID. We used Kaplan–Meier analysis to identify the correlations between genes and overall survival (OS). Finally, univariate and multivariate cox regression analysis were employed to construct survival model and predict prognosis. Results: We found immune/stromal score was correlated with T pathological grade and PRCC subtypes. 989 differentially expressed genes (DEGs) and 1169 DEGs were identified respectively on the basis of immune and stromal score. Venn diagrams indicated that 763 co-upregulated genes and 4 co-downregulated genes were identified. Kaplan-Meier analysis revealed that 120 genes were involved in tumor prognosis. Then PPI network analysis identified 22 hub genes, and four of which were significantly related to OS in patients with PRCC confirmed by cox regression analysis. Conclusions: Four tumor microenvironment-related genes (CD79A, CXCL13, IL6 and CCL19) were identified as biomarkers for PRCC prognosis.


2021 ◽  
Author(s):  
Zhengxin Wu ◽  
Jinshui Tan ◽  
Yifan Zhuang ◽  
Mengya Zhong ◽  
Yubo Xiong ◽  
...  

Abstract Background Metabolic reprogramming has been reported in various kinds of cancers and is related to clinical prognosis, but the prognostic role of pyrimidine metabolism in gastric cancer (GC) remains unclear. Methods Here, we employed DEG analysis to detect the differentially expressed genes (DEGs) in pyrimidine metabolic signaling pathway and used univariate Cox analysis, Lasso-penalizes Cox regression analysis, Kaplan-Meier survival analysis, univariate and multivariate Cox regression analysis to explore their prognostic roles in GC. The DEGs were experimentally validated in GC cells and clinical samples by quantitative real-time PCR. Results Through DEG analysis, we found NT5E, DPYS and UPP1 these three genes are highly expressed in GC. This conclusion has also been verified in GC cells and clinical samples. A prognostic risk model was established according to these three DEGs by Univariate Cox analysis and Lasso-penalizes Cox regression analysis. Kaplan-Meier survival analysis suggested that patient cohorts with high risk score undertook a lower overall survival rate than those with low risk score. Stratified survival analysis, Univariate and multivariate Cox regression analysis of this model confirmed that it is a reliable and independent clinical factor. Therefore, we made nomograms to visually depict the survival rate of GC patients according to some important clinical factors including our risk model. Conclusion In a word, our research found that pyrimidine metabolism is dysregulated in GC and established a prognostic model of GC based on genes differentially expressed in pyrimidine metabolism.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Didi Zuo ◽  
Chao Li ◽  
Tao Liu ◽  
Meng Yue ◽  
Jiantao Zhang ◽  
...  

AbstractMetabolic genes have played a significant role in tumor development and prognosis. In this study, we constructed a metabolic risk model to predict the prognosis of colon cancer based on The Cancer Genome Atlas (TCGA) and validated the model by Gene Expression Omnibus (GEO). We extracted 753 metabolic genes and identified 139 differentially expressed genes (DEGs) from TCGA database. Then we conducted univariate cox regression analysis and Least Absolute Shrinkage and Selection Operator Cox regression analysis to identify prognosis-related genes and construct the metabolic risk model. An eleven-gene prognostic model was constructed after 1000 resamples. The gene signature has been proved to have an excellent ability to predict prognosis by Kaplan–Meier analysis, time-dependent receiver operating characteristic, risk score, univariate and multivariate cox regression analysis based on TCGA. Then we validated the model by Kaplan–Meier analysis and risk score based on GEO database. Finally, we performed a weighted gene co-expression network analysis and protein–protein interaction network on DEGs, and Kyoto Encyclopedia of Genes and Genomes pathways and Gene Ontology enrichment analyses were conducted. The results of functional analyses showed that most significantly enriched pathways focused on metabolism, especially glucose and lipid metabolism pathways.


2021 ◽  
Author(s):  
Rui Feng ◽  
Jian Li ◽  
Weiling Xuan ◽  
Hanbo Liu ◽  
Dexin Cheng ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) is a prevalent primary liver cancer and the main cause of cancer mortality. Its high complexity and dismal prognosis bring dramatic difficulty to treatment. Due to the disclosed dual functions of autophagy in cancer development, understanding autophagy-related genes devotes into seeking novel biomarkers for HCC. Methods Differential expression of genes in normal and tumor groups was analyzed to acquire autophagy-related genes in HCC. GO and KEGG pathway analyses were conducted on these genes. Genes were then screened by univariate regression analysis. The screened genes were subjected to multivariate Cox regression analysis to build a prognostic model. The model was validated by ICGC validation set. Results Altogether, 42 autophagy-related differential genes were screened by differential expression analysis. Enrichment analysis showed that they were mainly enriched in pathways including regulation of autophagy and cell apoptosis. Genes were screened by univariate analysis and multivariate Cox regression analysis to build a prognostic model. The model was constituted by 6 feature genes: EIF2S1, BIRC5, SQSTM1, ATG7, HDAC1, FKBP1A. Validation confirmed the accuracy and independence of this model in predicting HCC patient’s prognosis. Conclusion A total of 6 feature genes were identified to build a prognostic risk model. This model is conducive to investigating interplay between autophagy-related genes and HCC prognosis.


2020 ◽  
Author(s):  
Xiang Zhou ◽  
Keying Zhang ◽  
Fa Yang ◽  
Chao Xu ◽  
Jianhua Jiao ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) is a disease with higher morbidity, mortality, and poor prognosis in the whole world. Understanding the crosslink between HCC and the immune system is essential for people to uncover a few potential and valuable therapeutic strategies. This study aimed to reveal the correlation between HCC and immune-related genes and establish a clinical evaluation model. Methods: We had analyzed the clinical information consisted of 373 HCC and 49 normal samples from the cancer genome atlas (TCGA). The differentially expressed genes (DEGs) were selected by the Wilcoxon test and the immune-related differentially expressed genes (IRDEGs) in DEGs were identified by matching DEGs with immune-related genes downloaded from the ImmPort database. Furthermore, the univariate Cox regression analysis and multivariate Cox regression analysis were performed to construct a prognostic risk model. Then, twenty-two types of tumor immune-infiltrating cells (TIICs) were downloaded from Tumor Immune Estimation Resource (TIMER) and were used to construct the correlational graphs between the TIICs and risk score by the CIBERSORT. Subsequently, the transcription factors (TFs) were gained in the Cistrome website and the differentially expressed TFs (DETFs) were achieved. Finally, the KEGG pathway analysis and GO analysis were performed to further understand the molecular mechanisms between DETFs and PDIRGs.Results: In our study, 5839 DEGs, 326 IRDEGs, and 31 prognosis-related IRDEGs (PIRDEGs) were identified. And 8 optimal PIRDEGs were employed to construct a prognostic risk model by multivariate Cox regression analysis. The correlation between risk genes and clinical characterizations and TIICs has verified that the prognostic model was effective in predicting the prognosis of HCC patients. Finally, several important immune-related pathways and molecular functions of the eight PIRDEGs were significantly enriched and there was a distinct association between the risk IRDEGs and TFs. Conclusion: The prognostic risk model showed a more valuable predicting role for HCC patients, and produced many novel therapeutic targets and strategies for HCC.


2015 ◽  
Vol 42 (3) ◽  
pp. 239-249 ◽  
Author(s):  
Kultigin Turkmen ◽  
Levent Demirtas ◽  
Ergun Topal ◽  
Abduzhappar Gaipov ◽  
Ismail Kocyigit ◽  
...  

Background: Atrial electromechanical delay (AEMD) times were considered independent predictors of cardiovascular morbidity among the general population. We aimed at evaluating AEMD times and other risk factors associated with 2-year combined cardiovascular (CV) events in HD patients. Material and Methods: Sixty hemodialysis (HD) and 44 healthy individuals were enrolled in this prospective study. Echocardiography was performed before the mid-week dialysis session for HD patients. Data were expressed as mean ± SD. Spearman test was used to assess linear associations. Survival was examined with the Kaplan-Meier method. Multivariate Cox regression analysis was used to determine the predictors of combined CV events in this cohort. Results: At the beginning of the study, left intra-atrial-AEMD times were significantly longer in HD patients compared to the left intra-atrial-AEMD times in healthy individuals. After 24 months, 41 patients were still on HD treatment and 19 (31.6%) had died. Serum triglyceride, total cholesterol and albumin were found to be higher and C-reactive protein (CRP) levels, left intra-atrial EMD time (LIAT) and interatrial EMD times were found to be lower in survived HD patients. With the cut-off median values of 3.5 g/dl for albumin, 0.87 mg/dl for CRP, 157 mg/dl for total cholesterol and 151 mg/dl for triglyceride, the Kaplan-Meier curves demonstrated significant differences in terms of all-cause mortality. We also demonstrated the Kaplan-Meier survival curves of HD patients according to tertile values of LIAT. Cox regression analysis revealed that increased CRP and higher LIAT were found to be independent predictors of combined CV events. Conclusions: Increased LIAT and inflammation were found to be closely associated with 2 years combined CV events and all-cause mortality in HD patients.


Sign in / Sign up

Export Citation Format

Share Document