scholarly journals Extracellular vesicles as potential biomarkers and therapeutic approaches in autoimmune diseases

2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Kaiyuan Xu ◽  
Qin Liu ◽  
Kaihui Wu ◽  
Liu Liu ◽  
Maomao Zhao ◽  
...  

AbstractExtracellular vesicles are heterogeneous populations of naturally occurring secreted small vesicles. EVs function as signaling platforms to facilitate intracellular communication, which indicates the physiological or pathophysiological conditions of cells or tissues. Considering that EVs can be isolated from most body fluids and that molecular constituents could be reprogrammed according to the physiological status of the secreting cells, EVs are regarded as novel diagnostic and prognostic biomarkers for many diseases. The ability to protect encapsulated molecules from degradation in body fluids suggests the potential of EVs as biological medicines or drug delivery systems. This article focuses on the EV-associated biomarkers and therapeutic approaches in autoimmune diseases.

Pharmaceutics ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 442 ◽  
Author(s):  
Prakash Gangadaran ◽  
Byeong-Cheol Ahn

Extracellular vesicles (EVs) are small membrane-based nanovesicles naturally released from cells. Extracellular vesicles mimetics (EVMs) are artificial vesicles engineered from cells or in combination with lipid materials, and they mimic certain characteristics of EVs. As such, EVs facilitate intracellular communication by carrying and delivering biological materials, such as proteins, lipids, and nucleic acids, and they have been found to find organ tropism in preclinical studies. Because of their native structure and characteristics, they are considered promising drug carriers for future clinical use. This review outlines the origin and composition of natural EVs and EVM engineering and internalization. It then details different loading approaches, with examples of the drug delivery of therapeutic molecules. In addition, the advantages and disadvantages of loading drugs into EVs or EVMs as a drug delivery system are discussed. Finally, the advantages of EVMs over EVs and the future clinical translation of EVM-based drug delivery platforms are outlined.


2020 ◽  
Vol 26 (42) ◽  
pp. 5488-5502 ◽  
Author(s):  
Yub Raj Neupane ◽  
Asiya Mahtab ◽  
Lubna Siddiqui ◽  
Archu Singh ◽  
Namrata Gautam ◽  
...  

Autoimmune diseases are collectively addressed as chronic conditions initiated by the loss of one’s immunological tolerance, where the body treats its own cells as foreigners or self-antigens. These hay-wired antibodies or immunologically capable cells lead to a variety of disorders like rheumatoid arthritis, psoriatic arthritis, systemic lupus erythematosus, multiple sclerosis and recently included neurodegenerative diseases like Alzheimer’s, Parkinsonism and testicular cancer triggered T-cells induced autoimmune response in testes and brain. Conventional treatments for autoimmune diseases possess several downsides due to unfavourable pharmacokinetic behaviour of drug, reflected by low bioavailability, rapid clearance, offsite toxicity, restricted targeting ability and poor therapeutic outcomes. Novel nanovesicular drug delivery systems including liposomes, niosomes, proniosomes, ethosomes, transferosomes, pharmacosomes, ufasomes and biologically originated exosomes have proved to possess alluring prospects in supporting the combat against autoimmune diseases. These nanovesicles have revitalized available treatment modalities as they are biocompatible, biodegradable, less immunogenic and capable of carrying high drug payloads to deliver both hydrophilic as well as lipophilic drugs to specific sites via passive or active targeting. Due to their unique surface chemistry, they can be decorated with physiological or synthetic ligands to target specific receptors overexpressed in different autoimmune diseases and can even cross the blood-brain barrier. This review presents exhaustive yet concise information on the potential of various nanovesicular systems as drug carriers in improving the overall therapeutic efficiency of the dosage regimen for various autoimmune diseases. The role of endogenous exosomes as biomarkers in the diagnosis and prognosis of autoimmune diseases along with monitoring progress of treatment will also be highlighted.


2018 ◽  
Vol 128 ◽  
pp. 84-100 ◽  
Author(s):  
Masatoshi Maeki ◽  
Niko Kimura ◽  
Yusuke Sato ◽  
Hideyoshi Harashima ◽  
Manabu Tokeshi

2014 ◽  
Vol 195 ◽  
pp. 72-85 ◽  
Author(s):  
Roy van der Meel ◽  
Marcel H.A.M. Fens ◽  
Pieter Vader ◽  
Wouter W. van Solinge ◽  
Omolola Eniola-Adefeso ◽  
...  

2004 ◽  
Vol 3 (1) ◽  
pp. 43-56 ◽  
Author(s):  
Carlos Gamazo ◽  
Maria Blanco-Prieto ◽  
Maria Lecaroz ◽  
Ana Vitas ◽  
Bruno Gander ◽  
...  

2020 ◽  
Vol 10 (6) ◽  
pp. 748-765
Author(s):  
Alaa A.A. Aljabali ◽  
Mohammad A. Obeid

Background:: Surface modification of nanoparticles with targeting moieties can be achieved through bioconjugation chemistries to impart new Functionalities. Various polymeric nanoparticles have been used for the formulation of nanoparticles such as naturally-occurring protein cages, virus-like particles, polymeric saccharides, and liposomes. These polymers have been proven to be biocompatible, side effects free and degradable with no toxicity. Objectives:: This paper reviews available literature on the nanoparticles pharmaceutical and medical applications. The review highlights and updates the customized solutions for selective drug delivery systems that allow high-affinity binding between nanoparticles and the target receptors. Methods:: Bibliographic databases and web-search engines were used to retrieve studies that assessed the usability of nanoparticles in the pharmaceutical and medical fields. Data were extracted on each system in vivo and in vitro applications, its advantages and disadvantages, and its ability to be chemically and genetically modified to impart new functionalities. Finally, a comparison between naturally occurring and their synthetic counterparts was carried out. Results:: The results showed that nanoparticles-based systems could have promising applications in diagnostics, cell labeling, contrast agents (Magnetic Resonance Imaging and Computed Tomography), antimicrobial agents, and as drug delivery systems. However, precautions should be taken to avoid or minimize toxic effect or incompatibility of nanoparticles-based systems with the biological systems in case of pharmaceutical or medical applications. Conclusion:: This review presented a summary of recent developments in the field of pharmaceutical nanotechnology and highlighted the challenges and the merits that some of the nanoparticles- based systems both in vivo and in vitro systems.


Maturitas ◽  
2016 ◽  
Vol 84 ◽  
pp. 25-31 ◽  
Author(s):  
C. Rodríguez-Nogales ◽  
E. Garbayo ◽  
M.M. Carmona-Abellán ◽  
M.R. Luquin ◽  
M.J. Blanco-Prieto

Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2241
Author(s):  
Raúl Cazorla-Luna ◽  
Araceli Martín-Illana ◽  
Fernando Notario-Pérez ◽  
Roberto Ruiz-Caro ◽  
María-Dolores Veiga

Biopolymers have several advantages for the development of drug delivery systems, since they are biocompatible, biodegradable and easy to obtain from renewable resources. However, their most notable advantage may be their ability to adhere to biological tissues. Many of these biopolymers have ionized forms, known as polyelectrolytes. When combined, polyelectrolytes with opposite charges spontaneously form polyelectrolyte complexes or multilayers, which have great functional versatility. Although only one natural polycation—chitosan has been widely explored until now, it has been combined with many natural polyanions such as pectin, alginate and xanthan gum, among others. These polyelectrolyte complexes have been used to develop multiple mucoadhesive dosage forms such as hydrogels, tablets, microparticles, and films, which have demonstrated extraordinary potential to administer drugs by the ocular, nasal, buccal, oral, and vaginal routes, improving both local and systemic treatments. The advantages observed for these formulations include the increased bioavailability or residence time of the formulation in the administration zone, and the avoidance of invasive administration routes, leading to greater therapeutic compliance.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ewa Ł. Stępień ◽  
Carina Rząca ◽  
Paweł Moskal

Abstract Extracellular vesicles (EVs) are nano- and micro-sized double-layered membrane entities derived from most cell types and released into biological fluids. Biological properties (cell-uptake, biocompatibility), and chemical (composition, structure) or physical (size, density) characteristics make EVs a good candidate for drug delivery systems (DDS). Recent advances in the field of EVs (e.g., scaling-up production, purification) and developments of new imaging methods (total-body positron emission tomography [PET]) revealed benefits of radiolabeled EVs in diagnostic and interventional medicine as a potential DDs in theranostics.


Author(s):  
Sanjay Kumar Ojha ◽  
Ritesh Pattnaik ◽  
Puneet Kumar Singh ◽  
Shubha Dixit ◽  
Snehasish Mishra ◽  
...  

: Over the last two decades, drug delivery systems have evolved at a tremendous rate. Synthetic nanoparticles have played an important role in the design of vaccine and their delivery as many of them have shown improved safety and efficacy over conventional formulations. Nanocarriers formulated by natural, biological building blocks have become an important tool in the field biomedicine. A successful nanocarrier must have certain properties like evading the host immune system, target specificity, cellular entry, escape from endosomes, and ability to release material into the cytoplasm. Some or all of these functions can be performed by viruses making them a suitable candidate for naturally occurring nanocarriers. Moreover, viruses can be made non-infectious and non-replicative without compromising their ability to penetrate cells thus making them useful for a vast spectrum of applications. Currently, various carrier molecules are under different stages of development to become bio-nano capsules. This review covers the advances made in the field of viruses as potential nanocarriers and discusses the related technologies and strategies to target specific cells by using virus inspired nanocarriers. In future, these virus-based nano-formulations will be able to provide solutions towards pressing and emerging infectious diseases.


Sign in / Sign up

Export Citation Format

Share Document