scholarly journals Capped antigenomic RNA transcript facilitates rescue of a plant rhabdovirus

2017 ◽  
Vol 14 (1) ◽  
Author(s):  
Shasha Qian ◽  
Xiaolan Chen ◽  
Kai Sun ◽  
Yang Zhang ◽  
Zhenghe Li
Author(s):  
O. E. Bradfute

Maize mosaic virus (MMV) causes a severe disease of Zea mays in many tropical and subtropical regions of the world, including the southern U.S. (1-3). Fig. 1 shows internal cross striations of helical nucleoprotein and bounding membrane with surface projections typical of many plant rhabdovirus particles including MMV (3). Immunoelectron microscopy (IEM) was investigated as a method for identifying MMV. Antiserum to MMV was supplied by Ramon Lastra (Instituto Venezolano de Investigaciones Cientificas, Caracas, Venezuela).


BIO-PROTOCOL ◽  
2015 ◽  
Vol 5 (20) ◽  
Author(s):  
Etienne Delannoy ◽  
And�ol Falcon de Longevialle ◽  
Catherine Francs-Small

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Karin Holmfeldt ◽  
Emelie Nilsson ◽  
Domenico Simone ◽  
Margarita Lopez-Fernandez ◽  
Xiaofen Wu ◽  
...  

AbstractThe deep biosphere contains members from all three domains of life along with viruses. Here we investigate the deep terrestrial virosphere by sequencing community nucleic acids from three groundwaters of contrasting chemistries, origins, and ages. These viromes constitute a highly unique community compared to other environmental viromes and sequenced viral isolates. Viral host prediction suggests that many of the viruses are associated with Firmicutes and Patescibacteria, a superphylum lacking previously described active viruses. RNA transcript-based activity implies viral predation in the shallower marine water-fed groundwater, while the deeper and more oligotrophic waters appear to be in ‘metabolic standby’. Viral encoded antibiotic production and resistance systems suggest competition and antagonistic interactions. The data demonstrate a viral community with a wide range of predicted hosts that mediates nutrient recycling to support a higher microbial turnover than previously anticipated. This suggests the presence of ‘kill-the-winner’ oscillations creating slow motion ‘boom and burst’ cycles.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Dongwen Rong ◽  
Qian Dong ◽  
Huajun Qu ◽  
Xinna Deng ◽  
Fei Gao ◽  
...  

AbstractIncreasing evidence demonstrates that long noncoding RNAs (lncRNAs) play critical roles in human breast cancer (BC) tumorigenesis. However, the mechanisms by which lncRNA and N6-methyladenosine (m6A) regulate BC tumorigenesis are still unclear. In the present research, LINC00958 was markedly overexpressed in BC tissue and cells, and LINC00958 upregulation promoted the tumor progression of BC cells. Mechanistically, m6A methyltransferase-like 3 (METTL3) gave rise to the upregulation of LINC00958 by promoting its RNA transcript stability. Moreover, LINC00958 acted as a competitive endogenous RNA for miR-378a-3p to promote YY1. Overall, these data provide novel insight into how m6A-mediated LINC00958 regulates BC tumorigenesis.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1304
Author(s):  
Nicolás Bejerman ◽  
Ralf G. Dietzgen ◽  
Humberto Debat

Rhabdoviruses infect a large number of plant species and cause significant crop diseases. They have a negative-sense, single-stranded unsegmented or bisegmented RNA genome. The number of plant-associated rhabdovirid sequences has grown in the last few years in concert with the extensive use of high-throughput sequencing platforms. Here, we report the discovery of 27 novel rhabdovirus genomes associated with 25 different host plant species and one insect, which were hidden in public databases. These viral sequences were identified through homology searches in more than 3000 plant and insect transcriptomes from the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) using known plant rhabdovirus sequences as the query. The identification, assembly and curation of raw SRA reads resulted in sixteen viral genome sequences with full-length coding regions and ten partial genomes. Highlights of the obtained sequences include viruses with unique and novel genome organizations among known plant rhabdoviruses. Phylogenetic analysis showed that thirteen of the novel viruses were related to cytorhabdoviruses, one to alphanucleorhabdoviruses, five to betanucleorhabdoviruses, one to dichorhaviruses and seven to varicosaviruses. These findings resulted in the most complete phylogeny of plant rhabdoviruses to date and shed new light on the phylogenetic relationships and evolutionary landscape of this group of plant viruses. Furthermore, this study provided additional evidence for the complexity and diversity of plant rhabdovirus genomes and demonstrated that analyzing SRA public data provides an invaluable tool to accelerate virus discovery, gain evolutionary insights and refine virus taxonomy.


2002 ◽  
Vol 13 (10) ◽  
pp. 3696-3705 ◽  
Author(s):  
Chin-Hung Cheng ◽  
David Tai-Wai Yew ◽  
Hiu-Yee Kwan ◽  
Qing Zhou ◽  
Yu Huang ◽  
...  

CNG channels are cyclic nucleotide-gated Ca2+-permeable channels that are suggested to be involved in the activity-dependent alterations of synaptic strength that are thought to underlie information storage in the CNS. In this study, we isolated an endogenous RNA transcript antisense to CNGα1 mRNA. This transcript was capable of down-regulating the expression of sense CNGα1 in theXenopus oocyte expression system. RT-PCR, Northern blot, and in situ hybridization analyses showed that the transcript was coexpressed with CNGα1 mRNA in many regions of human brain, notably in those regions that were involved in long-term potentiation and long-term depression, such as hippocampal CA1 and CA3, dentate gyrus, and cerebellar Purkinje layer. Comparison of expression patterns between adult and fetal cerebral cortex revealed that there were concurrent developmental changes in the expression levels of anti-CNG1 and CNGα1. Treatment of human glioma cell T98 with thyroid hormone T3 caused a significant increase in anti-CNG1 expression and a parallel decrease in sense CNGα1 expression. These data suggest that the suppression of CNGα1 expression by anti-CNG1 may play an important role in neuronal functions, especially in synaptic plasticity and cortical development. Endogenous antisense RNA-mediated regulation may represent a new mechanism through which the activity of ion channels can be regulated in the human CNS.


2018 ◽  
Vol 19 (10) ◽  
pp. 3284 ◽  
Author(s):  
Brijesh Kumar Singh ◽  
Rohit Anthony Sinha ◽  
Paul Michael Yen

The thyroid hormone plays a key role in energy and nutrient metabolisms in many tissues and regulates the transcription of key genes in metabolic pathways. It has long been believed that thyroid hormones (THs) exerted their effects primarily by binding to nuclear TH receptors (THRs) that are associated with conserved thyroid hormone response elements (TREs) located on the promoters of target genes. However, recent transcriptome and ChIP-Seq studies have challenged this conventional view as discordance was observed between TH-responsive genes and THR binding to DNA. While THR association with other transcription factors bound to DNA, TH activation of THRs to mediate effects that do not involve DNA-binding, or TH binding to proteins other than THRs have been invoked as potential mechanisms to explain this discrepancy, it appears that additional novel mechanisms may enable TH to regulate the mRNA expression. These include activation of transcription factors by SIRT1 via metabolic actions by TH, the post-translational modification of THR, the THR co-regulation of transcription with other nuclear receptors and transcription factors, and the microRNA (miR) control of RNA transcript expression to encode proteins involved in the cellular metabolism. Together, these novel mechanisms enlarge and diversify the panoply of metabolic genes that can be regulated by TH.


2008 ◽  
Vol 83 (6) ◽  
pp. 2429-2435 ◽  
Author(s):  
Leonard H. Evans ◽  
A. S. M. Alamgir ◽  
Nick Owens ◽  
Nick Weber ◽  
Kimmo Virtaneva ◽  
...  

ABSTRACT Mammalian genomes harbor a large number of retroviral elements acquired as germ line insertions during evolution. Although many of the endogenous retroviruses are defective, several contain one or more intact viral genes that are expressed under certain physiological or pathological conditions. This is true of the endogenous polytropic retroviruses that generate recombinant polytropic murine leukemia viruses (MuLVs). In these recombinants the env gene sequences of exogenous ecotropic MuLVs are replaced with env gene sequences from an endogenous polytropic retrovirus. Although replication-competent endogenous polytropic retroviruses have not been observed, the recombinant polytropic viruses are capable of replicating in numerous species. Recombination occurs during reverse transcription of a virion RNA heterodimer comprised of an RNA transcript from an endogenous polytropic virus and an RNA transcript from an exogenous ecotropic MuLV RNA. It is possible that homodimers corresponding to two full-length endogenous RNA genomes are also packaged. Thus, infection by an exogenous virus may result not only in recombination with endogenous sequences, but also in the mobilization of complete endogenous retrovirus genomes via pseudotyping within exogenous retroviral virions. We report that the infection of mice with an ecotropic virus results in pseudotyping of intact endogenous viruses that have not undergone recombination. The endogenous retroviruses infect and are integrated into target cell genomes and subsequently replicate and spread as pseudotyped viruses. The mobilization of endogenous retroviruses upon infection with an exogenous retrovirus may represent a major interaction of exogenous retroviruses with endogenous retroviruses and may have profound effects on the pathogenicity of retroviral infections.


Sign in / Sign up

Export Citation Format

Share Document