scholarly journals HIF-1α is a key mediator of the lung inflammatory potential of lithium-ion battery particles

2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Violaine Sironval ◽  
Mihaly Palmai-Pallag ◽  
Rita Vanbever ◽  
François Huaux ◽  
Jorge Mejia ◽  
...  

Abstract Background Li-ion batteries (LIB) are increasingly used worldwide. They are made of low solubility micrometric particles, implying a potential for inhalation toxicity in occupational settings and possibly for consumers. LiCoO2 (LCO), one of the most used cathode material, induces inflammatory and fibrotic lung responses in mice. LCO also stabilizes hypoxia-inducible factor (HIF) -1α, a factor implicated in inflammation, fibrosis and carcinogenicity. Here, we investigated the role of cobalt, nickel and HIF-1α as determinants of toxicity, and evaluated their predictive value for the lung toxicity of LIB particles in in vitro assays. Results By testing a set of 5 selected LIB particles (LCO, LiNiMnCoO2, LiNiCoAlO2) with different cobalt and nickel contents, we found a positive correlation between their in vivo lung inflammatory activity, and (i) Co and Ni particle content and their bioaccessibility and (ii) the stabilization of HIF-1α in the lung. Inhibition of HIF-1α with chetomin or PX-478 blunted the lung inflammatory response to LCO in mice. In IL-1β deficient mice, HIF-1α was the upstream signal of the inflammatory lung response to LCO. In vitro, the level of HIF-1α stabilization induced by LIB particles in BEAS-2B cells correlated with the intensity of lung inflammation induced by the same particles in vivo. Conclusions We conclude that HIF-1α, stabilized in lung cells by released Co and Ni ions, is a mechanism-based biomarker of lung inflammatory responses induced by LIB particles containing Co/Ni. Documenting the Co/Ni content of LIB particles, their bioaccessibility and their capacity to stabilize HIF-1α in vitro can be used to predict the lung inflammatory potential of LIB particles.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ying Tang ◽  
Mengchun Zhou ◽  
Rongrong Huang ◽  
Ling Shen ◽  
Li Yang ◽  
...  

Abstract Background Astrocytes participate in innate inflammatory responses within the mammalian central nervous system (CNS). HECT domain E3 ubiquitin protein ligase 1 (HECTD1) functions during microglial activation, suggesting a connection with neuroinflammation. However, the potential role of HECTD1 in astrocytes remains largely unknown. Results Here, we demonstrated that HECTD1 was upregulated in primary mouse astrocytes after 100 ng/ml lipopolysaccharide (LPS) treatment. Genetic knockdown of HECTD1 in vitro or astrocyte-specific knockdown of HECTD1 in vivo suppressed LPS-induced astrocyte activation, whereas overexpression of HECTD1 in vitro facilitated LPS-induced astrocyte activation. Mechanistically, we established that LPS activated σ-1R-JNK/p38 pathway, and σ-1R antagonist BD1047, JNK inhibitor SP600125, or p38 inhibitor SB203580 reversed LPS-induced expression of HECTD1, thus restored LPS-induced astrocyte activation. In addition, FOXJ2 functioned as a transcription factor of HECTD1, and pretreatment of primary mouse astrocytes with BD1047, SB203580, and SP600125 significantly inhibited LPS-mediated translocation of FOXJ2 into the nucleus. Conclusions Overall, our present findings suggest that HECTD1 participates in LPS-induced astrocyte activation by activation of σ-1R-JNK/p38-FOXJ2 pathway and provide a potential therapeutic strategy for neuroinflammation induced by LPS or any other neuroinflammatory disorders.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shinjini Chakraborty ◽  
Veronika Eva Winkelmann ◽  
Sonja Braumüller ◽  
Annette Palmer ◽  
Anke Schultze ◽  
...  

AbstractSingular blockade of C5a in experimental models of sepsis is known to confer protection by rescuing lethality and decreasing pro-inflammatory responses. However, the role of inhibiting C5a has not been evaluated in the context of sterile systemic inflammatory responses, like polytrauma and hemorrhagic shock (PT + HS). In our presented study, a novel and highly specific C5a L-aptamer, NoxD21, was used to block C5a activity in an experimental murine model of PT + HS. The aim of the study was to assess early modulation of inflammatory responses and lung damage 4 h after PT + HS induction. NoxD21-treated PT + HS mice displayed greater polymorphonuclear cell recruitment in the lung, increased pro-inflammatory cytokine levels in the bronchoalveolar lavage fluids (BALF) and reduced myeloperoxidase levels within the lung tissue. An in vitro model of the alveolar-capillary barrier was established to confirm these in vivo observations. Treatment with a polytrauma cocktail induced barrier damage only after 16 h, and NoxD21 treatment in vitro did not rescue this effect. Furthermore, to test the exact role of both the cognate receptors of C5a (C5aR1 and C5aR2), experimental PT + HS was induced in C5aR1 knockout (C5aR1 KO) and C5aR2 KO mice. Following 4 h of PT + HS, C5aR2 KO mice had significantly reduced IL-6 and IL-17 levels in the BALF without significant lung damage, and both, C5aR1 KO and C5aR2 KO PT + HS animals displayed reduced MPO levels within the lungs. In conclusion, the C5aR2 could be a putative driver of early local inflammatory responses in the lung after PT + HS.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Hao Huang ◽  
Yanqin Fan ◽  
Zhao Gao ◽  
Wei Wang ◽  
Ning Shao ◽  
...  

Abstract Background Studies have indicated that changed expression of hypoxia-inducible factor-1α (HIF-1α) in epithelial cells from the kidney could affect the renal function in chronic kidney disease (CKD). As Angiotensin II (Ang II) is a critical active effector in the renin-angiotensin system (RAS) and was proved to be closely related to the inflammatory injury. Meanwhile, researchers found that Ang II could alter the expression of HIF-1α in the kidney. However, whether HIF-1α is involved in mediating Ang II-induced inflammatory injury in podocytes is not clear. Methods Ang II perfusion animal model were established to assess the potential role of HIF-1α in renal injury in vivo. Ang II stimulated podocytes to observe the corresponding between HIF-1α and inflammatory factors in vitro. Results The expression of inflammatory cytokines such as MCP-1 and TNF-α was increased in the glomeruli from rats treated with Ang II infusion compared with control rats. Increased HIF-1α expression in the glomeruli was also observed in Ang II-infused rats. In vitro, Ang II upregulated the expression of HIF-1α in podocytes. Furthermore, knockdown of HIF-1α by siRNA decreased the expression of MCP-1 and TNF-α. Moreover, HIF-1α siRNA significantly diminished the Ang II-induced overexpression of HIF-1α. Conclusion Collectively, our results suggest that HIF-1α participates in the inflammatory response process caused by Ang II and that downregulation of HIF-1α may be able to partially protect or reverse inflammatory injury in podocytes.


2012 ◽  
Vol 442 (3) ◽  
pp. 621-629 ◽  
Author(s):  
Radin Sadre ◽  
Christian Pfaff ◽  
Stephan Buchkremer

PQ-9 (plastoquinone-9) has a central role in energy transformation processes in cyanobacteria by mediating electron transfer in both the photosynthetic as well as the respiratory electron transport chain. The present study provides evidence that the PQ-9 biosynthetic pathway in cyanobacteria differs substantially from that in plants. We identified 4-hydroxybenzoate as being the aromatic precursor for PQ-9 in Synechocystis sp. PCC6803, and in the present paper we report on the role of the membrane-bound 4-hydroxybenzoate solanesyltransferase, Slr0926, in PQ-9 biosynthesis and on the properties of the enzyme. The catalytic activity of Slr0926 was demonstrated by in vivo labelling experiments in Synechocystis sp., complementation studies in an Escherichia coli mutant with a defect in ubiquinone biosynthesis, and in vitro assays using the recombinant as well as the native enzyme. Although Slr0926 was highly specific for the prenyl acceptor substrate 4-hydroxybenzoate, it displayed a broad specificity with regard to the prenyl donor substrate and used not only solanesyl diphosphate, but also a number of shorter-chain prenyl diphosphates. In combination with in silico data, our results indicate that Slr0926 evolved from bacterial 4-hydroxybenzoate prenyltransferases catalysing prenylation in the course of ubiquinone biosynthesis.


2020 ◽  
Author(s):  
Yang Jiao ◽  
Jianjian Wang ◽  
Huixue Zhang ◽  
Yuze Cao ◽  
Yang Qu ◽  
...  

Abstract Background Microglia are rapidly activated after ischemic stroke and participate in the occurrence of neuroinflammation, which exacerbates the injury of ischemic stroke. Receptor Interacting Serine Threonine Kinase 1 (RIPK1) is thought to be involved in the development of inflammatory responses, but its role in ischemic microglia remains unclear. Here, we applied recombinant human thioredoxin-1 (rhTrx-1), a potential neuroprotective agent, to explore the role of rhTrx-1 in inhibiting RIPK1-mediated neuroinflammatory responses in microglia. Method Middle cerebral artery occlusion (MCAO) and Oxygen and glucose deprivation (OGD) were conducted for in vivo and in vitro experimental stroke models. The expression of RIPK1 in microglia after ischemia was examined. The inflammatory response of microglia was analyzed after treatment with rhTrx-1 and Necrostatin-1 (Nec-1, inhibitors of RIPK1), and the mechanisms were explored. In addition, the effects of rhTrx-1 on neurobehavioral deficits and cerebral infarct volume were examined. Results RIPK1 expression was detected in microglia after ischemia. Molecular docking results showed that rhTrx-1 could directly bind to RIPK1. In vitro experiments found that rhTrx-1 reduced necroptosis, mitochondrial membrane potential damage, Reactive oxygen species (ROS) accumulation and NLR Family, pyrin domain-containing 3 protein (NLRP3) inflammasome activation by inhibiting RIPK-1 expression, and regulated microglial M1/M2 phenotypic changes, thereby reducing the release of inflammatory factors. Consistently, in vivo experiments found that rhTrx-1 treatment attenuated cerebral ischemic injury by inhibiting the inflammatory response. Conclusion Our study demonstrates the role of RIPK1 in microglia-arranged neuroinflammation after cerebral ischemia. Administration of rhTrx-1 provides neuroprotection in ischemic stroke-induced microglial neuroinflammation by inhibiting RIPK1 expression.


2020 ◽  
Author(s):  
Pengbo Sun ◽  
Yipei Ding ◽  
Jingyi Luo ◽  
Jin Zhong ◽  
Weidong Xie

Abstract BackgroundLipotoxicity plays an important role in the development of diabetic cardiomyopathy and heart failure (HF). Canagliflozin (CAN), a marketed sodium-glucose co-transporter 2 inhibitor, has significant beneficial effects on HF. However, the potential pharmacological mechanism is still unknown.MethodsIn this study, we evaluated the protective effects and mechanism of CAN in the hearts of a C57BL/6J diabetic mouse model induced by a high-fat diet/streptozotocin (HFD/STZ) for 12 weeks in vivo and using HL-1 cells (a type of mouse cardiomyocyte line) induced by palmitic acid (PA) in vitro.ResultsCAN could significantly alleviate lipid accumulation and inflammatory responses in the hearts of the HFD/STZ-induced diabetic mice. Furthermore, CAN significantly attenuated the inflammatory injury induced by PA in the HL-1 cells. In addition, CAN bound to the mammalian target of rapamycin (mTOR) and significantly inhibited mTOR phosphorylation and hypoxia inducible factor-1α (HIF-1α) expression.ConclusionCAN attenuated lipotoxicity in cardiomyocytes and protected diabetic mouse hearts by targeting the mTOR/HIF-1α pathway.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaolei Liu ◽  
Shaoping Lin ◽  
Yiyue Zhong ◽  
Jiaojiao Shen ◽  
Xuedi Zhang ◽  
...  

Remimazolam is a new benzodiazepine of sedative drugs with an ultra-short-acting anesthetic effect, commonly used for critically ill patients (especially septic patients) in intensive care units (ICUs). Although some anesthetics have been reported to show certain anti-inflammatory effects, the role of remimazolam in inflammation is still remained unknown. Here, we studied the effects of remimazolam on macrophage in response to LPS both in vivo and in vitro. Interestingly, compared with LPS treatment group, remimazolam remarkably improved survival rate of endotoxemia mice and decreased the release of LPS-induced inflammatory mediators (such as TNF-α, IL-6, and IL-1β). We further found that remimazolam not only inhibited the activation of MAPK signal pathway at 15 min after LPS treatment but also disturbed Rab5a related TLR4 expression at cell surface in response to LPS at a later time. Such evidence suggests that remimazolam might be beneficial to septic patients who are suffering from uncontrolled inflammatory responses.


Author(s):  
Marco Giordano ◽  
Alessandra Decio ◽  
Chiara Battistini ◽  
Micol Baronio ◽  
Fabrizio Bianchi ◽  
...  

Abstract Background Cancer stem cells (CSC) have been implicated in tumor progression. In ovarian carcinoma (OC), CSC drive tumor formation, dissemination and recurrence, as well as drug resistance, thus contributing to the high death-to-incidence ratio of this disease. However, the molecular basis of such a pathogenic role of ovarian CSC (OCSC) has been elucidated only to a limited extent. In this context, the functional contribution of the L1 cell adhesion molecule (L1CAM) to OC stemness remains elusive. Methods The expression of L1CAM was investigated in patient-derived OCSC. The genetic manipulation of L1CAM in OC cells provided gain and loss-of-function models that were then employed in cell biological assays as well as in vivo tumorigenesis experiments to assess the role of L1CAM in OC cell stemness and in OCSC-driven tumor initiation. We applied antibody-mediated neutralization to investigate L1CAM druggability. Biochemical approaches were then combined with functional in vitro assays to study the molecular mechanisms underlying the functional role of L1CAM in OCSC. Results We report that L1CAM is upregulated in patient-derived OCSC. Functional studies showed that L1CAM promotes several stemness-related properties in OC cells, including sphere formation, tumor initiation and chemoresistance. These activities were repressed by an L1CAM-neutralizing antibody, pointing to L1CAM as a druggable target. Mechanistically, L1CAM interacted with and activated fibroblast growth factor receptor-1 (FGFR1), which in turn induced the SRC-mediated activation of STAT3. The inhibition of STAT3 prevented L1CAM-dependent OC stemness and tumor initiation. Conclusions Our study implicate L1CAM in the tumorigenic function of OCSC and point to the L1CAM/FGFR1/SRC/STAT3 signaling pathway as a novel driver of OC stemness. We also provide evidence that targeting this pathway can contribute to OC eradication.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3581-3581
Author(s):  
Nirav Dhanesha ◽  
Manasa K Nayak ◽  
Prakash Doddapattar ◽  
Anil K Chauhan

Background: Coordinated interactions between neutrophils, platelets and endothelial cells contribute towards the development of arterial thrombosis. Neutrophils along with platelets are the first immune cells that are recruited at the site of endothelial activation/injury or infection. Recent studies have suggested that neutrophils modulate thrombosis via several mechanisms, including NETosis (formation of neutrophil extracellular traps). The integrin α9 is highly expressed on neutrophils while platelets do not express it. The integrin α9 up-regulated upon neutrophil activation and is implicated in stable adhesion and transmigration. The mechanisms underlying the role of integrin α9 towards the progression of arterial thrombosis has not been explored yet. Objective: To elucidate the mechanistic insights into the role of myeloid-cell specific integrin α9 in neutrophil adhesion and arterial thrombosis. Methods: We generated novel myeloid-specific α9-/- mice (α9fl/fl LysMcre+l-) by crossing α9fl/fl with LysMcr+/+mice. Littermates α9fl/flLysMcre-l-mice were used as controls. Standardized in vitro assays were used to evaluate the role of integrin α9 in neutrophil mediated platelet aggregation, NETosis and Cathepsin-G release. Susceptibility to arterial thrombosis and hemostasis was evaluated in vivo (FeCl3-induced carotid and laser-injury induced mesenteric artery thrombosis models) by utilizing intravital microscopy and tail bleeding assay respectively. Results: α9fl/flLysMCre+/-mice developed smaller thrombi (~40% occlusion), when compared with α9fl/flmice (~80% occlusion, 10 minutes post-FeCl3 induced injury). The mean time to complete occlusion was significantly prolonged in α9fl/flLysMCre+/-mice (P<0.05 vs α9fl/fl mice). Consistent with this, α9fl/flLysMCre+/-mice displayed significantly decreased platelet mean fluorescence intensity (MFI) and reduced rate of thrombus growth in laser injury-induced thrombosis model (P<0.05 vs. α9fl/fl mice). Together, these results suggest that myeloid cell-specific integrin α9 contributes to the experimental thrombosis at arterial shear rates. Monocytes depletion experiments demonstrated a minimal role for monocyte in progression of arterial thrombosis. In vitro mechanistic studies demonstrated a reduction in neutrophil-mediated platelet aggregation and cathepsin-G secretion in myeloid cell-specific integrin α9-/- mice, when compared with litter-mates control wild-type mice. Notably, the percentage of cells releasing NETs was markedly reduced in myeloid cell-specific integrin α9-/- mice that was concomitant with reduced MPO levels in carotid thrombus of α9fl/flLysMCre+/-mice. Together, these results suggest most likely integrin α9 expressed on neutrophils, but not monocytes, promotes arterial thrombosis. Comparable tail bleeding time between α9fl/flLysMcreand littermate α9fl/fl mice suggested that myeloid-cell specific deficiency of integrin α9 does not alter hemostasis. Conclusion: These findings reveal a novel role for integrin α9 in modulation of arterial thrombosis. While the clinical implications of these findings remains to be explored, we suggest that targeting integrin α9 may reduce post reperfusion thrombo-inflammatory injury, following acute myocardial infarction or stroke. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Amirreza Nasirzadeh ◽  
Mohammad hosein Jafarzadeh Maivan ◽  
Javad Bazeli ◽  
Jafar Hajavi ◽  
Negar Yavarmanesh ◽  
...  

Plant species with anti-inflammatory properties might play an essential role in combatting COVID-19 via reducing cytokine storms. We aimed to review the extant evidence of the potential therapeutic efficacy of natural products against cytokine storms by inhibiting interleukin-6 (IL-6) as a major pathological mediator. Data were collected following an electronic search in major databases (Pubmed, Scopus, Web of Science, Google Scholar) and also preprint articles on preprint and medRxiv servers by using a combination of relevant keywords. Seventeen active compounds and medicinal plants were found and reviewed in the present review. Results of both in-vivo and in-vitro experiments conducted on these compounds showed that Phillyrin, SMFM, Qiangzhi decoction, curcumin, Shen-Fu, Forsythia, and Alpha-Mangostin inhibit the production of IL-6. Andrographolide and Liu Shen Wan have an inhibitory effect on releasing this agent, while Ilex Asprella and Deoxy-11,12-didehydroandrographolide and naringin reduce the expression of IL-6. Theaflavin and Cholorogenic acid inhibit the secretion of IL-6, Xuebijing, and Chai-Hu-Gui-Zi-Gan-Jiang-Tang and Lipanpaidu prescription can reduce the serum level of IL-6. These agents also effectively improve infected lungs, increase survival rates, and minimize tissue damage. Medicinal plants and their phytochemical ingredients with down-regulatory effects on the expression of IL-6 have a potential influence on the inhibition of cytokine storms during viral infection caused by COVID-19. Therefore, phytochemicals could be regarded as promising candidates for managing cytokine storm inflammatory responses due to COVID-19 infection.


Sign in / Sign up

Export Citation Format

Share Document