scholarly journals Cobalt oxide nanoparticles induce oxidative stress and alter electromechanical function in rat ventricular myocytes

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Monia Savi ◽  
Leonardo Bocchi ◽  
Francesca Cacciani ◽  
Rocchina Vilella ◽  
Annamaria Buschini ◽  
...  

Abstract Background Nanotoxicology is an increasingly relevant field and sound paradigms on how inhaled nanoparticles (NPs) interact with organs at the cellular level, causing harmful conditions, have yet to be established. This is particularly true in the case of the cardiovascular system, where experimental and clinical evidence shows morphological and functional damage associated with NP exposure. Giving the increasing interest on cobalt oxide (Co3O4) NPs applications in industrial and bio-medical fields, a detailed knowledge of the involved toxicological effects is required, in view of assessing health risk for subjects/workers daily exposed to nanomaterials. Specifically, it is of interest to evaluate whether NPs enter cardiac cells and interact with cell function. We addressed this issue by investigating the effect of acute exposure to Co3O4-NPs on excitation-contraction coupling in freshly isolated rat ventricular myocytes. Results Patch clamp analysis showed instability of resting membrane potential, decrease in membrane electrical capacitance, and dose-dependent decrease in action potential duration in cardiomyocytes acutely exposed to Co3O4-NPs. Motion detection and intracellular calcium fluorescence highlighted a parallel impairment of cell contractility in comparison with controls. Specifically, NP-treated cardiomyocytes exhibited a dose-dependent decrease in the fraction of shortening and in the maximal rate of shortening and re-lengthening, as well as a less efficient cytosolic calcium clearing and an increased tendency to develop spontaneous twitches. In addition, treatment with Co3O4-NPs strongly increased ROS accumulation and induced nuclear DNA damage in a dose dependent manner. Finally, transmission electron microscopy analysis demonstrated that acute exposure did lead to cellular internalization of NPs. Conclusions Taken together, our observations indicate that Co3O4-NPs alter cardiomyocyte electromechanical efficiency and intracellular calcium handling, and induce ROS production resulting in oxidative stress that can be related to DNA damage and adverse effects on cardiomyocyte functionality.

2001 ◽  
Vol 95 (3) ◽  
pp. 766-770 ◽  
Author(s):  
Yasuo Tsutsumi ◽  
Shuzo Oshita ◽  
Takashi Kawano ◽  
Hiroshi Kitahata ◽  
Yoshinobu Tomiyama ◽  
...  

Background Accumulating evidence suggests that mitochondrial rather than sarcolemmal adenosine triphosphate-sensitive K+ (K(ATP)) channels may have an important role in the protection of myocardium during ischemia. Because both lidocaine and mexiletine are frequently used antiarrhythmic drugs during myocardial ischemia, it is important to investigate whether they affect mitochondrial K(ATP) channel activities. Methods Male Wistar rats were anesthetized with ether. Single, quiescent ventricular myocytes were dispersed enzymatically. The authors measured flavoprotein fluorescence to evaluate mitochondrial redox state. Lidocaine or mexiletine was applied after administration of diazoxide (25 microM), a selective mitochondrial K(ATP) channel opener. The redox signal was normalized to the baseline flavoprotein fluorescence obtained during exposure to 2,4-dinitrophenol, a protonophore that uncouples respiration from ATP synthesis and collapses the mitochondrial potential. Results Diazoxide-induced oxidation of flavoproteins and the redox changes were inhibited by 5-hydroxydecanoic acid, a selective mitochondrial K(ATP) channel blocker, suggesting that flavoprotein fluorescence can be used as an index of mitochondrial oxidation mediated by mitochondrial K(ATP) channels. Lidocaine (10(-3) to 10 mM) and mexiletine (10(-3) to 10 mM) reduced oxidation of the mitochondrial matrix in a dose-dependent manner with an EC50 of 98+/-63 microM for lidocaine and 107+/-89 microM for mexiletine. Conclusions Both lidocaine and mexiletine reduced flavoprotein fluorescence induced by diazoxide in rat ventricular myocytes, indicating that these antiarrhythmic drugs may produce impairment of mitochondrial oxidation mediated by mitochondrial K(ATP) channels.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e6093 ◽  
Author(s):  
Qiao Ye ◽  
Yongyong Feng ◽  
Zhenlu Wang ◽  
Wenzhao Jiang ◽  
Yuexin Qu ◽  
...  

Gelsemine is an important toxic substance extracted from Gelsemium elegans, which has a lot of biological functions in cells and organisms, but its toxicity has been rarely reported in Tetrahymena thermophila. In this study, we used the protozoan T. thermophila as an experimental model to investigate the potential toxicity-induced mechanism of gelsemine in the unicellular eukaryote. Our results clearly showed gelsemine inhibited T. thermophila growth in a dose-dependent manner. This exposure also resulted in oxidative stress on T. thermophila cells and antioxidant enzyme levels were significantly altered at high gelsemine levels (p < 0.05). Gelsemine produced a slight apoptotic effect at the highest (0.8 mg/mL) gelsemine level used here (p < 0.05). Furthermore, the toxin-induced DNA damage in a dose-dependent manner. The ultrastructural analysis also revealed mitophagic vacuoles at 0.4 and 0.8 mg/mL levels of gelsemine exposure. Moreover, expressions of oxidative stress-related and MAP kinase genes were significantly changed after exposure to 0.8 mg/mL level of gelsemine (p < 0.05). Altogether, our results clearly show that gelsemine from G. elegans can inhibit the growth via inducing oxidative stress and DNA damage in T. thermophila cells.


2020 ◽  
Vol 20 (6) ◽  
pp. 498-507 ◽  
Author(s):  
Connor A.H. Thompson ◽  
Judy M.Y. Wong

Increasing evidence from research on telomerase suggests that in addition to its catalytic telomere repeat synthesis activity, telomerase may have other biologically important functions. The canonical roles of telomerase are at the telomere ends where they elongate telomeres and maintain genomic stability and cellular lifespan. The catalytic protein component Telomerase Reverse Transcriptase (TERT) is preferentially expressed at high levels in cancer cells despite the existence of an alternative mechanism for telomere maintenance (alternative lengthening of telomeres or ALT). TERT is also expressed at higher levels than necessary for maintaining functional telomere length, suggesting other possible adaptive functions. Emerging non-canonical roles of TERT include regulation of non-telomeric DNA damage responses, promotion of cell growth and proliferation, acceleration of cell cycle kinetics, and control of mitochondrial integrity following oxidative stress. Non-canonical activities of TERT primarily show cellular protective effects, and nuclear TERT has been shown to protect against cell death following double-stranded DNA damage, independent of its role in telomere length maintenance. TERT has been suggested to act as a chromatin modulator and participate in the transcriptional regulation of gene expression. TERT has also been reported to regulate transcript levels through an RNA-dependent RNA Polymerase (RdRP) activity and produce siRNAs in a Dicer-dependent manner. At the mitochondria, TERT is suggested to protect against oxidative stress-induced mtDNA damage and promote mitochondrial integrity. These extra-telomeric functions of TERT may be advantageous in the context of increased proliferation and metabolic stress often found in rapidly-dividing cancer cells. Understanding the spectrum of non-canonical functions of telomerase may have important implications for the rational design of anti-cancer chemotherapeutic drugs.


2017 ◽  
Vol 43 (4) ◽  
pp. 1449-1459 ◽  
Author(s):  
Renata A. C. Silva ◽  
Andréa F. Gonçalves ◽  
Priscila P. dos Santos ◽  
Bruna Rafacho ◽  
Renan F. T. Claro ◽  
...  

Background/Aims: This study aimed to discern whether the cardiac alterations caused by retinoic acid (RA) in normal adult rats are physiologic or pathologic. Methods and Results: Wistar rats were assigned into four groups: control animals (C, n = 20) received a standard rat chow; animals fed a diet supplemented with 0.3 mg/kg/day all-trans-RA (AR1, n = 20); animals fed a diet supplemented with 5 mg/kg/day all-trans-RA (AR2, n = 20); and animals fed a diet supplemented with 10 mg/kg/day all-trans-RA (AR3, n = 20). After 2 months, the animals were submitted to echocardiogram, isolated heart study, histology, energy metabolism status, oxidative stress condition, and the signaling pathway involved in the cardiac remodeling induced by RA. RA increased myocyte cross-sectional area in a dose-dependent manner. The treatment did not change the morphological and functional variables, assessed by echocardiogram and isolated heart study. In contrast, RA changed catalases, superoxide dismutase, and glutathione peroxidases and was associated with increased values of lipid hydroperoxide, suggesting oxidative stress. RA also reduced citrate synthase, enzymatic mitochondrial complex II, ATP synthase, and enzymes of fatty acid metabolism and was associated with increased enzymes involved in glucose use. In addition, RA increased JNK 1/2 expression, without changes in TGF-β, PI3K, AKT, NFκB, S6K, and ERK. Conclusion: In normal rats, RA induces cardiac hypertrophy in a dose-dependent manner. The non-participation of the PI3K/Akt pathway, associated with the participation of the JNK pathway, oxidative stress, and changes in energy metabolism, suggests that cardiac remodeling induced by RA supplementation is deleterious.


1992 ◽  
Vol 12 (2) ◽  
pp. 301-305 ◽  
Author(s):  
Fumito Kadoya ◽  
Akira Mitani ◽  
Tatsuru Arai ◽  
Kiyoshi Kataoka

The xanthine derivative propentofylline (HWA 285) has been reported to show protective effects against neuronal damage induced by cerebral ischemia. In the present study, microfluorometry was used to investigate the effect of propentofylline on the hypoxia–hypoglycemia-induced intracellular calcium accumulation in gerbil hippocampal slices. When slices were superfused with hypoxic–hypoglycemic medium that did not contain propentofylline, an acute increase in calcium accumulation was detected 75–200 s (mean latency of 123 s) after the beginning of hypoxia–hypoglycemia. When slices were superfused with hypoxic–hypoglycemic mediums that contained 10 μ M, 100 μ M, and 1 m M propentofylline, the latency of the acute increase in calcium accumulation was prolonged in all subregions of the hippocampus in a dose-dependent manner: mean latencies in field CA1 were 146, 168, and 197 s after hypoxia–hypoglycemia, respectively. This retardation in calcium accumulation may be involved in the mechanisms by which propentofylline diminishes ischemic injury.


2018 ◽  
Vol 6 (1) ◽  
pp. 1 ◽  
Author(s):  
Oluyinka Iyiolai ◽  
A. A. Adeagbo ◽  
W. S. Weliange ◽  
S. I. Abdulkareem ◽  
Anifowoshe T. Abass ◽  
...  

Chlorpyrifos (CPF) is a very toxic pesticide commonly used for controlling agriculturally important pests. The present study investigates DNA damaging effects of CPF on Clarias gariepinus was assessed using genetic assays. Fish were exposed to varying concentrations of CPF (100ppm, 200ppm and 300ppm) at 96 hours (acute exposure). LC50 of the pesticide was found to be 120ppm and one-tenth of the LC50 (12ppm) was taken for the chronic exposure. Distilled water and colchicine were used as negative and positive controls respectively. After 28 days of chronic exposure, fish were fed with inclusion of B. sapida seed (powder) for 14 days. Liver and gills of the fish were removed following 96h exposure, days 7, 14 and 28 of the chronic exposure as well as after the period of amelioration (14 days) for CA assay and histopathological analysis. The results of CA assay showed statistically significant (p ˂ 0.05) increase in CA in a dose-dependent manner for all the exposed groups after acute exposure and time dependent after chronic exposure. Also, this study showed that CPF can potentially induce genotoxic and histopathological changes in fish and other aquatic organisms.


2021 ◽  
Author(s):  
Ahmed M Hamdan ◽  
Zuhair M. Mohammedsaleh ◽  
Aalaa Aboelnour ◽  
Sherif M.H. Elkhannishi

Abstract PurposeThe therapeutic activity of Glyceryl trinitrate (GTN) is mainly regulated by liberating nitric oxide (NO) and reactive nitrogen species (RNS). During this biotransformation, oxidative stress and lipid peroxidation inside the red blood cells (RBCs) occur. The principal objective of our research is to explain the ameliorating effect of L-ascorbic acid for the deleterious effects of chronic administration of nitrovasodilator drugs. MethodsWe studied some biochemical parameters for the oxidative stress using groups of high sucrose/fat (HSF) diet Wistar male rats chronically orally administered ISMN. Afterwards, we evaluated the role of L-ascorbic acid against these biochemical changes. ResultsChronic treatment with organic nitrates caused elevated serum levels of lipid peroxidation, hemoglobin derivatives as methemoglobin and carboxyhemoglobin, rate of hemoglobin autoxidation, the cellular levels of pro-inflammatory cytokines marker (NF-κB) and apoptosis markers (caspase-3) in myocardium muscles in a dose dependent manner. Meanwhile, such exposure caused decline in the enzymatic effect of superoxide dismutase (SOD), glutathione (GSH) and catalase activity (CAT) accompanied with a decrease of in the level of mitochondrial oxidative stress marker (nrf2) in myocardium muscles and decrease in the serum iron and total iron binding capacity (TIBC) in a dose dependent manner. Concomitant treatment with L-ascorbic acid significantly diminished these changes for all examined parameters.ConclusionChronic administration of organic nitrates leads to the alteration of the level of oxidative stress factors in the myocardium tissue due to generation of reactive oxygen species. Using vitamin C can effectively ameliorate such intoxication to overcome the nitrate tolerance.


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Enio R Vasques ◽  
Helena Nader ◽  
Ivarne Tersariol ◽  
Godoy Carlos

Background: Ion channels are pharmacological targets for antiarrhythmic action, and drugs currently used for this purpose are generally not specific to a site of action and may act on several channels and even trigger proarrhythmic phenomena. Trisulfate disaccharide (TD) is an heparin fragment known to act on the sodium calcium exchanger (NCX), reducing intracellular calcium in overload situations and reversing arrhytmias, but its action on other ionic currents is unknown. Objective: To evaluate by patch clamp the action of TD at different concentrations in NCX and ionic currents in situations of intracellular calcium overload. Materials and Methods: Adult rat myocytes were obtained from a sample from ventricles. Currents were measured using the whole-cell variant of the patch clamp method. Creation of voltage clamp pulses and data acquisition was controlled by a computer with pClamp software. Peak inward current amplitude was measured for ion currents. For Na/Ca exchange current a ramp voltage protocol was employed. Three different concentrations of Cai (300nM, 400nM and 600nM) were used in separate experiments. One drug concentration was applied per cell (10, 30 and 100 micromolar each). The current sensitive to 5mM nickel was taken as the Na/Ca exchange current. The effects of TD on the INa, L-type Ca, and the potassium currents, transiente outward current (Ito), inwardly rectifying potassium current (IK1), and sustained current (Isus) recorded from adult rat ventricular myocytes were also examined in the same conditions. Results: TD concentration-dependently increased the inward Na/Ca exchange current in all intracellular calcium concentration. The effects of TD on the INa, L-type Ca, and the potassium currents, Ito, IK1 and Isus was associated with less than 30% mean reduction on any current at the highest concentration of TD tested (100 micromolar) and still below the positive block controls for different channels that is above 40% block. Conclusion: TD acts on NCX under different concentrations used, without affecting other ionic currents, suggesting specificity in the mechanism of action and possibly not exerting a pro-arrhythmic activity, this effect being desirable for its possible use in reversal of cardiac arrhythmias.


2020 ◽  
Vol 84 (2) ◽  
Author(s):  
Wafa Trabelsi ◽  
Chaima Fouzai ◽  
Imene Chetoui ◽  
Safa Bejaoui ◽  
Khaoula Telahigue ◽  
...  

Acrylamide (ACR) is among the most deleterious pollutants in the environment and presents a serious risk to humans and ecosystems. The purpose of this study was to assess its effects when administered at different concentrations (5, 10 and 20 mg L–1) to evaluate antioxidant status in the gills of Mactra stultorum. Our results showed, after five days of treat­ment, an increase in malondialdehyde (MDA), lipid hydroperoxides (LOOH), advanced oxidation protein products (AOPP), reduced glutathione (GSH), ascorbic acid (Vit C) and metallothionein (MDA) levels in gills of treated clams compared with controls. Moreover, an increase in superoxide dismutase (SOD) and a significant decrease in glutathione peroxidase (GPx) activities were also observed. Acrylamide induced neurotoxicity, as evidenced by the inhibition of acetylcholinesterase (AChE) activity in a dose-dependent manner. Overall, our results indicated that oxidative stress may be considered one of the mechanisms behind acrylamide toxicity in bivalves, although the subject requires more research.


Sign in / Sign up

Export Citation Format

Share Document