scholarly journals hsa_circ_001946 elevates HOXA10 expression and promotes the development of endometrial receptivity via sponging miR-135b

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Fang Zhao ◽  
Yihong Guo ◽  
Zhanrong Shi ◽  
Menglan Wu ◽  
Yuzhen Lv ◽  
...  

Abstract Background Impaired endometrial receptivity is a major reason for embryo implantation failure. There’s a paucity of information regarding the role of circRNAs on endometrial receptivity. Here, we investigated the function of hsa_circ_001946 on endometrial receptivity and its mechanisms. Methods A total of 50 women composing 25 with recurrent implantation failure and 25 who conceived after their implantation were recruited in this study. Expression of hsa_circ_001946, miR-135b, and HOXA10 was evaluated by quantitative RT-PCR (qRT-PCR) in biopsied endometrial tissue samples. The levels of HOXA10, and cell cycle markers (CCNB1, CDK1, and CCND1) were determined by IHC and western blotting assays. Binding relationship among miR-135b, hsa_circ_001946 and HOXA10 were confirmed by dual luciferase reporter assays and western blotting. MTT assays and cell cycle assays by FACS were employed to evaluate the proliferation and cell cycle of cells. T-HESCs were cultured with 1 µM medroxyprogesterone acetate (MPA) and 0.5 mM 8-bromoadenosine 3’:5’-cyclic monophosphate (8-Br-cAMP) to induce decidualization. The mechanisms and functions of hsa_circ_001946 on decidualization were further assessed by qRT-PCR evaluating the expression of hsa_circ_001946, miR-135b, HOXA10 and decidual markers (PRL and IGFBP1) in T-HESCs. Results Endometrial tissues from patients with recurrent implantation failure had lower hsa_circ_001946 expression, higher miR-135b expression, and lower HOXA10 expression. Hsa_circ_001946 promoted HOXA10 expression by sponging miR-135b in T-HESCs. Overexpression of hsa_circ_001946 restored cell proliferation and cell cycle that were disrupted by miR-135b overexpression in T-HESCs. Decidualized T-HESCs had higher hsa_circ_001946 expression, lower miR-135b expression, and higher HOXA10 expression. Overexpression of hsa_circ_001946 reversed the expression of decidual markers (PRL and IGFBP1) that were suppressed by miR-135b overexpression in T-HESCs. Conclusions In conclusion, our findings suggest that hsa_circ_001946 promotes cell proliferation and cell cycle process and increases expression of decidualization markers to enhance endometrial receptivity progression via sponging miR-135b and elevating HOXA10.

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Pingping Xue ◽  
Wenbo Zhou ◽  
Wenqiang Fan ◽  
Jianya Jiang ◽  
Chengcai Kong ◽  
...  

Abstract Background Recurrent implantation failure (RIF) is a major limitation of assisted reproductive technology, which is associated with impaired endometrial receptivity. Although N6-methyladenosine (m6A) has been demonstrated to be involved in various biological processes, its potential role in the endometrium of women with RIF has been poorly studied. Methods Global m6A levels and major m6A methyltransferases/demethylases mRNA levels in mid-secretory endometrium from normal and RIF women were examined by colorimetric m6A quantification strategy and quantitative real-time PCR, respectively. The effects of METTL3-mediated m6A modification on embryo attachment were evaluated by an vitro model of a confluent monolayer of Ishikawa cells co-cultured with BeWo spheroids, and the expression levels of homeo box A10 (HOXA10, a well-characterized marker of endometrial receptivity) and its downstream targets were evaluated by quantitative real-time PCR and Western blotting in METTL3-overexpressing Ishikawa cells. The molecular mechanism for METTL3 regulating HOXA10 expression was determined by methylated RNA immunoprecipitation assay and transcription inhibition assay. Results Global m6A methylation and METTL3 expression were significantly increased in the endometrial tissues from women with RIF compared with the controls. Overexpression of METTL3 in Ishikawa cells significantly decreased the ration of BeWo spheroid attachment, and inhibited HOXA10 expression with downstream decreased β3-integrin and increased empty spiracles homeobox 2 expression. METTL3 catalyzed the m6A methylation of HOXA10 mRNA and contributed to its decay with shortened half-life. Enforced expression of HOXA10 in Ishikawa cells effectively rescued the impairment of METTL3 on the embryo attachment in vitro. Conclusion Increased METTL3-mediated m6A modification represents an adverse impact on embryo implantation by inhibiting HOXA10 expression, contributing to the pathogenesis of RIF.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Wen-Li Liu ◽  
Hu-xia Wang ◽  
Cheng-xin Shi ◽  
Fei-yu Shi ◽  
Ling-yu Zhao ◽  
...  

Abstract Background MicroRNAs (miRNAs) play key roles in tumorigenesis and progression of gastric cancer (GC). miR-1269 has been reported to be upregulated in several cancers and plays a crucial role in carcinogenesis and cancer progression. However, the biological function of miR-1269 in human GC and its mechanism remain unclear and need to be further elucidated. Methods The expression of miR-1269 in GC tissues and cell lines was detected by quantitative real-time PCR (qRT-PCR). Target prediction programs (TargetScanHuman 7.2 and miRBase) and a dual-luciferase reporter assay were used to confirm that Ras-association domain family 9 (RASSF9) is a target gene of miR-1269. The expression of RASSF9 was measured by qRT-PCR and Western blotting in GC tissues. MTT and cell counting assays were used to explore the effect of miR-1269 on GC cell proliferation. The cell cycle and apoptosis were measured by flow cytometry. RASSF9 knockdown and overexpression were used to further verify the function of the target gene. Results We found that miR-1269 expression was upregulated in human GC tissues and cell lines. The overexpression of miR-1269 promoted GC cell proliferation and cell cycle G1-S transition and suppressed apoptosis. The inhibition of miR-1269 inhibited cell growth and G1-S transition and induced apoptosis. miR-1269 expression was inversely correlated with RASSF9 expression in GC tissues. RASSF9 was verified to be a direct target of miR-1269 by using a luciferase reporter assay. The overexpression of miR-1269 decreased RASSF9 expression at both the mRNA and protein levels, and the inhibition of miR-1269 increased RASSF9 expression. Importantly, silencing RASSF9 resulted in the same biological effects in GC cells as those induced by overexpression of miR-1269. Overexpression of RASSF9 reversed the effects of miR-1269 overexpression on GC cells. Both miR-1269 overexpression and RASSF9 silencing activated the AKT signaling pathway, which modulated cell cycle regulators (Cyclin D1 and CDK2). In contrast, inhibition of miR-1269 and RASSF9 overexpression inhibited the AKT signaling pathway. Moreover, miR-1269 and RASSF9 also regulated the Bax/Bcl-2 signaling pathway. Conclusions Our results demonstrate that miR-1269 promotes GC cell proliferation and cell cycle G1-S transition by activating the AKT signaling pathway and inhibiting cell apoptosis via regulation of the Bax/Bcl-2 signaling pathway by targeting RASSF9. Our findings indicate an oncogenic role of miR-1269 in GC pathogenesis and the potential use of miR-1269 in GC therapy.


2016 ◽  
Vol 38 (5) ◽  
pp. 1915-1927 ◽  
Author(s):  
Peiquan Li ◽  
Yuxin Sun ◽  
Qing Liu

Aims: Aberrant expression of microRNA-340 (miR-340) has been frequently reported in some cancers excluding ovarian cancer (OC). The role and its molecular mechanism of miR-340 in OC have not been reported. Methods: Real-time PCR was performed to detect the expression of miR-340 in OC cell lines. MiR-340 mimic and negative control were transfected into OC cells and the effects of miR-340 on the cell proliferation, cell cycle, apoptosis and metastasis were investigated by Brdu-ELISA assay, flow cytometry, qRT-PCR, Transwell and ELISA assays. Furthermore, protein level of NF-κB1 was measured by Western blotting. Meanwhile, luciferase assays were performed to validate NF-κB1 as miR-340 target in OC cells. Results: In this study, we explored the effects of miR-340 overexpression on apoptosis, invasion and EMT in OC cells. The mRNA level of miR-340 in OC cell lines and tissues was evidently reduced. The miR-340 mimic was transiently transfected into OC cells using Lipofectamine™ 2000 reagent. Subsequently, the Brdu-ELISA results showed that introduction of miR-340 inhibited cell proliferation. Our data also demonstrated that miR-340 mimic arrested cell cycle progression and promoted apoptosis of OC cells. In addition, miR-340 overexpression could also inhibit invasion and EMT of OC cells. qRT-PCR were used to determined the expressions of matrix metalloproteinase-2 and -9 (MMP-2 and -9) in OC cells. Next, we found that NF-κB1 expression was evidently reduced by up-regulation of miR-340. Bioinformatics analysis predicted that the NF-κB1 was a potential target gene of miR-340. Luciferase reporter assay further confirmed that miR-340 could directly target the 3' UTR of NF-κB1. Moreover, overexpression of NF-κB1 in OC cells transfected with miR-340 mimic partially reversed the inhibitory of miR-340 mimic. Conclusion: miR-340 induced cell apoptosis and inhibited metastasis in OC cells by down-regulation of NF-κB1.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tian-Jun Chen ◽  
Qi Zheng ◽  
Fei Gao ◽  
Tian Yang ◽  
Hui Ren ◽  
...  

Abstract Background MicroRNAs (miRNAs) are involved in the oncogenesis, development and transformation of lung squamous cell carcinoma (LUSC). miR-665 is clinically significant and acts as a pivotal function in some cancers. Nevertheless, the effects and the potential mechanisms of miR-665 in human LUSC are still unknown. Methods To analyse the clinical significant of miR-665 in human LUSC, quantitative real-time PCR (qRT-PCR) was use to measure miR-665 expression in LUSC specimen tissues and cell lines. Tripartite motif 8 (TRIM8) was verified a target of miR-665 by performing bioinformatic prediction and luciferase reporter assay. The expression levels of TRIM8 were examined through qRT-PCR and Western blotting in LUSC specimen tissues. CCK8 assay was fulfilled for analyzing the function in LUSC cell proliferation. Flow cytometry was used to detect cell and apoptosis. TRIM8 silencing and overexpression further verified the biological effects as those caused by miR-665. Results Here we reported that miR-665 expression was upregulated in LUSC specimen tissues and cell lines. High miR-665 levels were related to differentiation, tumor size and TNM stage. miR-665 mimics facilitated LUSC cell growth and cell cycle G1-S transition and repressed apoptosis. miR-665 inhibitor suppressed cell proliferation and G1-S transition and promoted apoptosis. miR-665 expression was negatively correlated with TRIM8 mRNA expression in LUSC. Luciferase reporter assay confirmed that TRIM8 was a direct target gene of miR-665. miR-665 mimics downregulated the TRIM8 levels, and miR-665 inhibitor upregulated the TRIM8 levels in LUSC cells. Particularly, silencing TRIM8 led to the similar effects of miR-665 mimics in LUSC cells. Overexpression of TRIM8 inhibited LUSC cell proliferation in vitro and in vivo. Furthermore, miR-665 promoted LUSC cell proliferation through facilitating the Wnt5a/β-catenin signaling pathway and restrained apoptosis via inhibiting Caspase-3 signaling pathway, whereas TRIM8 suppressed cell growth by repressing the Wnt5a/β-catenin signaling pathway and induced apoptosis through activating Caspase-3 signaling pathway. Conclusions The current study demonstrates that miR-665 facilitates LUSC cell proliferation and cell cycle transition by regulation of the Wnt5a/β-Catenin signaling pathway and represses cell apoptosis via modulation of Caspase-3 signaling pathway by directly targeting TRIM8. These findings suggest that miR-665 might be a potential new target for LUSC therapy.


2021 ◽  
Vol 20 ◽  
pp. 153303382199783
Author(s):  
XiangWen Yuan ◽  
Zhaoyan Sun ◽  
Congxian Cui

Objective: Retinoblastoma (RB) is a frequent eye cancer in children. Long non-coding RNA (LncRNA) HOXA transcript at the distal tip (HOTTIP) is aberrantly expressed in cancer tissues. This study explores the underlying mechanism of lncRNA HOTTIP in RB. Methods: HOTTIP expression in normal retinal cells and RB cell lines was detected using qRT-PCR. The proliferation of RB cells was measured using CCK-8 and EdU assays, and apoptosis was detected using flow cytometry and Western blotting after the transfection of si-HOTTIP into Y79 cells and pc-HOTTIP into HXO-RB-44 cells. The target relationships between HOTTIP and miR-101-3p, and miR-101-3p and STC1 were predicted by bioinformatics website and verified using dual-luciferase reporter gene assay. The binding of HOTTIP and miR-101-3p was verified using RNA pull-down assay. STC1 mRNA and protein in RB cells were measured using qRT-PCR and Western blotting. Moreover, si-HOTTIP and in-miR-101-3p/in-NC, and si-HOTTIP and pc-STC1/pcDNA were co-transfected into Y79 cells respectively to evaluate cell proliferation and apoptosis. Xenograft study was conducted, and Ki67-positive expression was detected using immunohistochemical staining. Results: HOTTIP expression was promoted in RB tissues and cells. Downregulation of HOTTIP inhibited proliferation and promoted apoptosis of Y79 cells, while upregulation of HOTTIP promoted proliferation and inhibited apoptosis of HXO-RB-44 cells. There were target relationships between HOTTIP and miR-101-3p, and miR-101-3p and STC1. Inhibition of miR-101-3p or overexpression of STC1 reversed the effect of si-HOTTIP on the proliferation and apoptosis of RB cells. Xenograft study showed that knockdown of HOTTIP suppressed the growth of RB in vitro. Conclusion: It could be concluded that HOTTIP sponged miR-101-3p to upregulate STC1 expression, thereby promoting RB cell proliferation and inhibiting apoptosis.


2021 ◽  
Author(s):  
Fenglin Mei ◽  
Chengcai Kong ◽  
Yan Wang ◽  
Jing Zhuang ◽  
Pingping Xue ◽  
...  

Abstract Purpose Impaired decidualization contributes to the infertility in recurrent implantation failure (RIF). Herein, we focused on the function and probable mechanisms of miR-133b in endometrial stromal cells decidualization.Methods miR-133b and KLF12 protein levels in midsecretory endometrial tissues derived from women with and without RIF were measured by qRT-PCR and Western blot. Primary human endometrial stromal cells (HESCs) were isolated and cultured for in vitro decidualization assays. Luciferase reporter, qRT-PCR and Western blot assays were used to measure the relationship between miR-133b and KLF12.Results miR-133b was significantly downregulated, whereas KLF12 was upregulated in endometrial tissues from RIF. miR-133b effectively promoted HESCs in vitro decidualization through the modulation of KLF12 expression and the activation of LIF/STAT3 pathway. Conversely, inhibition of miR-133b expression reversed these effects. In addition, the luciferase reporter system demonstrated that miR-133b directly inhibited the expression of KLF12 by interacting with 3’ untranslated region of KLF12.Conclusion Our data suggest that miR-133b promotes HESCs decidualization by targeting KLF12 and reverses the impaired decidualization in RIF.


Author(s):  
Dong-Yan Zhang ◽  
Qing-Can Sun ◽  
Xue-Jing Zou ◽  
Yang Song ◽  
Wen-Wen Li ◽  
...  

Abstract Background Dysregulation of long non-coding RNAs (lncRNAs) is responsible for cancer initiation and development, positioning lncRNAs as not only biomarkers but also promising therapeutic targets for cancer treatment. A growing number of lncRNAs have been reported in hepatocellular carcinoma (HCC), but their functional and mechanistic roles remain unclear. Methods Gene Set Enrichment Analysis was used to investigate the molecular mechanism of UPK1A antisense RNA 1 (UPK1A-AS1). Cell Counting Kit-8 assays, EdU assays, flow cytometry, western blotting, and xenograft assays were used to confirm the role of UPK1A-AS1 in the proliferation of HCC cells in vitro and in vivo. Bioinformatics analyses and quantitative polymerase chain reaction (qRT-PCR) were performed to explore the interplay between UPK1A-AS1 and enhancer of zeste homologue 2 (EZH2). RNA immunoprecipitation (RIP), RNA pull-down assays, western blotting, and qRT-PCR were conducted to confirm the interaction between UPK1A-AS1 and EZH2. The interaction between UPK1A-AS1 and miR-138-5p was examined by luciferase reporter and RIP assays. Finally, the expression level and prognosis value of UPK1A-AS1 in HCC were analyzed using RNA sequencing data from The Cancer Genome Atlas datasets. Results We showed that UPK1A-AS1, a newly identified lncRNA, promoted cellular proliferation and tumor growth by accelerating cell cycle progression. Cell cycle-related genes, including CCND1, CDK2, CDK4, CCNB1, and CCNB2, were significantly upregulated in HCC cells overexpressing UPK1A-AS1. Furthermore, overexpression of UPK1A-AS1 could protect HCC cells from cis-platinum toxicity. Mechanistically, UPK1A-AS1 interacted with EZH2 to mediate its nuclear translocation and reinforce its binding to SUZ12, leading to increased H27K3 trimethylation. Targeting EZH2 with specific small interfering RNA impaired the UPK1A-AS1-mediated upregulation of proliferation and cell cycle progression-related genes. Moreover, miR-138-5p was identified as a direct target of UPK1A-AS1. Additionally, UPK1A-AS1 was significantly upregulated in HCC, and the upregulation of UPK1A-AS1 predicted poor prognosis for patients with HCC. Conclusions Our study revealed that UPK1A-AS1 promotes HCC development by accelerating cell cycle progression through interaction with EZH2 and sponging of miR-138-5p, suggesting that UPK1A-AS1 possesses substantial potential as a novel biomarker for HCC prognosis and therapy.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yuhao Zhao ◽  
Dongmei He ◽  
Hong Zeng ◽  
Jiefeng Luo ◽  
Shuang Yang ◽  
...  

Abstract Background Poor endometrial receptivity is a major factor that leads to recurrent implantation failure. However, the traditional method cannot accurately evaluate endometrial receptivity. Various studies have indicated that microRNAs (miRNAs) are involved in multiple processes of embryo implantation, but the role of miRNAs in endometrial receptivity in patients with recurrent implantation failure (RIF) remains elusive. In the present study, we investigated the presence of pinopodes and the roles of miR-30d-5p, suppressor of cytokine signalling 1 (SOCS1) and the leukaemia inhibitory factor (LIF) pathway in women with a history of RIF during the implantation window. Methods Endometrial tissue samples were collected between January 2018 to June 2019 from two groups of women who underwent in vitro fertilisation and embryo transfer (IVF-ET) or frozen ET. The RIF group included 20 women who underwent ≥ 3 ETs, including a total of ≥ 4 good-quality embryos, without pregnancy, whereas the control group included 10 women who had given birth at least once in the past year. An endometrial biopsy was performed during the implantation window (LH + 7). The development of pinopodes in the endometrial biopsy samples from all groups was evaluated using scanning electron microscopy (SEM). Quantitative reverse transcription-polymerase chain reaction and western blotting were used to investigate the expression levels of miR-30d-5p, SOCS1, and the LIF pathway. Results The presence of developed pinopodes decreased in patients with RIF on LH + 7. The expression level of miR-30d-5p decreased in the endometria during the implantation window of patients with RIF, whereas the mRNA and protein levels of SOCS1 were significantly higher in the RIF group than in the control group. Furthermore, a negative correlation was observed between the expression of miR-30d-5p and SOCS1 (r2 = 0.8362). In addition, a significant decrease in LIF and p-STAT3 expression was observed during the implantation window in patients with RIF. Conclusions MiR-30d-5p and SOCS1 may be potential biomarkers for endometrial receptivity. Changes in pinopode development and abnormal expression of miR-30d-5p, SOCS1 and LIF pathway in the endometrium could be the reasons for implantation failure.


2020 ◽  
Author(s):  
Dong-Yan Zhang ◽  
Qing-Can Sun ◽  
Xue-Jing Zou ◽  
Yang Song ◽  
Wen-Wen Li ◽  
...  

Abstract Background: Dysregulation of long non-coding RNAs (lncRNAs) is responsible for cancer initiation and development, positioning lncRNAs as not only biomarkers but also promising therapeutic targets for cancer treatment. A growing number of lncRNAs have been reported in hepatocellular carcinoma (HCC), but their functional and mechanistic roles remain unclear. Methods: Gene Set Enrichment Analysis was used to investigate the molecular mechanism of UPK1A antisense RNA 1 (UPK1A-AS1). Cell Counting Kit-8 assays, EdU assays, flow cytometry, western blotting, and xenograft assays were used to confirm the role of UPK1A-AS1 in the proliferation of HCC cells in vitro and in vivo . Bioinformatics analyses and quantitative polymerase chain reaction (qRT-PCR) were performed to explore the interplay between UPK1A-AS1 and enhancer of zeste homologue 2 (EZH2). RNA immunoprecipitation (RIP), RNA pull-down assays, western blotting, and qRT-PCR were conducted to confirm the interaction between UPK1A-AS1 and EZH2. The interaction between UPK1A-AS1 and miR-138-5p was examined by luciferase reporter and RIP assays. Finally, the expression level and prognosis value of UPK1A-AS1 in HCC were analyzed using RNA sequencing data from The Cancer Genome Atlas datasets. Results: We showed that UPK1A-AS1, a newly identified lncRNA, promoted cellular proliferation and tumor growth by accelerating cell cycle progression. Cell cycle-related genes, including CCND1, CDK2, CDK4, CCNB1, and CCNB2, were significantly upregulated in HCC cells overexpressing UPK1A-AS1. Furthermore, overexpression of UPK1A-AS1 could protect HCC cells from cis-platinum toxicity. Mechanistically, UPK1A-AS1 interacted with EZH2 to mediate its nuclear translocation and reinforce its binding to SUZ12, leading to increased H27K3 trimethylation. Targeting EZH2 with specific small interfering RNA impaired the UPK1A-AS1-mediated upregulation of proliferation and cell cycle progression-related genes. Moreover, miR-138-5p was identified as a direct target of UPK1A-AS1. Additionally, UPK1A-AS1 was significantly upregulated in HCC, and the upregulation of UPK1A-AS1 predicted poor prognosis for patients with HCC. Conclusions: Our study revealed that UPK1A-AS1 promotes HCC development by accelerating cell cycle progression through interaction with EZH2 and sponging of miR-138-5p, suggesting that UPK1A-AS1 possesses substantial potential as a novel biomarker for HCC prognosis and therapy.


2021 ◽  
Author(s):  
Xiaowei Zhou ◽  
Yi Cao ◽  
mingjuan Zhou ◽  
Mi Han ◽  
mengyu Liu ◽  
...  

Abstract BackgroundThe precise pathogenesis of poor endometrial receptivity in recurrent implantation failure (RIF) still remains unclear. This study aims to explore the effects of different CD44 isoforms in the mid-secretory phase endometrium on endometrial receptivity in women with RIF.MethodsMid-secretory phase endometrial tissue samples were obtained from two groups of women who had undergone IVF: a) 24 patients with RIF, b) 18 patients with infertility due to tubal obstruction, who had achieved a successful clinical pregnancy after the first embryo transfer in IVF (control group). Identification of differentially expressed CD44 isoforms in endometrial tissues was assessed with immunohistochemistry, qPCR and western blotting. Effects of CD44v3 overexpression and knockdown on proliferation and decidualization of Immortalized human endometrial stromal cells (T-HESCs) and primary HESCs were investigated by qPCR and Western blot. A heterologous co-culture system of embryo implantation was constructed to mimics the process of trophoblast invasion during implantation.ResultsCD44v3 was significantly higher expressed in mid-secretory phase of endometrial stromal cells than proliferation phase, but was notably lower in RIF patients. The expression of decidualization markers, prolactin (PRL) and insulin like growth factor binding protein-1 (IGFBP1), was notably decreased following CD44v3 knockdown, whereas the expression levels of both PRL and IGFBP1 increased after CD44v3 overexpression in HESCs. Furthermore, the CD44v3-knockdown HESCs displayed a significantly deficiency in supporting trophoblast outgrowth through a co-culture system of embryo implantation; however, CD44v3 overexpression in HESCs promoted trophoblast outgrowth.ConclusionThe reduced expression of CD44v3 suppresses HESCs proliferation and decidualization, which might play a pivotal role in poor endometrial receptivity in women with RIF.


Sign in / Sign up

Export Citation Format

Share Document