scholarly journals MicroRNA-340 Induces Apoptosis and Inhibits Metastasis of Ovarian Cancer Cells by Inactivation of NF-κB1

2016 ◽  
Vol 38 (5) ◽  
pp. 1915-1927 ◽  
Author(s):  
Peiquan Li ◽  
Yuxin Sun ◽  
Qing Liu

Aims: Aberrant expression of microRNA-340 (miR-340) has been frequently reported in some cancers excluding ovarian cancer (OC). The role and its molecular mechanism of miR-340 in OC have not been reported. Methods: Real-time PCR was performed to detect the expression of miR-340 in OC cell lines. MiR-340 mimic and negative control were transfected into OC cells and the effects of miR-340 on the cell proliferation, cell cycle, apoptosis and metastasis were investigated by Brdu-ELISA assay, flow cytometry, qRT-PCR, Transwell and ELISA assays. Furthermore, protein level of NF-κB1 was measured by Western blotting. Meanwhile, luciferase assays were performed to validate NF-κB1 as miR-340 target in OC cells. Results: In this study, we explored the effects of miR-340 overexpression on apoptosis, invasion and EMT in OC cells. The mRNA level of miR-340 in OC cell lines and tissues was evidently reduced. The miR-340 mimic was transiently transfected into OC cells using Lipofectamine™ 2000 reagent. Subsequently, the Brdu-ELISA results showed that introduction of miR-340 inhibited cell proliferation. Our data also demonstrated that miR-340 mimic arrested cell cycle progression and promoted apoptosis of OC cells. In addition, miR-340 overexpression could also inhibit invasion and EMT of OC cells. qRT-PCR were used to determined the expressions of matrix metalloproteinase-2 and -9 (MMP-2 and -9) in OC cells. Next, we found that NF-κB1 expression was evidently reduced by up-regulation of miR-340. Bioinformatics analysis predicted that the NF-κB1 was a potential target gene of miR-340. Luciferase reporter assay further confirmed that miR-340 could directly target the 3' UTR of NF-κB1. Moreover, overexpression of NF-κB1 in OC cells transfected with miR-340 mimic partially reversed the inhibitory of miR-340 mimic. Conclusion: miR-340 induced cell apoptosis and inhibited metastasis in OC cells by down-regulation of NF-κB1.

2021 ◽  
pp. 1-13
Author(s):  
Lu Cai ◽  
Qian Zhang ◽  
Lili Du ◽  
Feiyun Zheng

Ovarian cancer (OC) is the most frequent cause of death among patients with gynecologic malignancies. In recent years, the development of cisplatin (DDP) resistance has become an important reason for the poor prognosis of OC patients. Therefore, it is vital to explore the mechanism of DDP resistance in OC. In this study, microRNA-1246 (miR-1246) expression in OC and DDP-resistant OC cells was determined by RT-qPCR, and chemosensitivity to DDP was assessed by the CCK-8 assay. A dual-luciferase reporter assay was performed to confirm the interaction between miR-1246 and zinc finger 23 (<i>ZNF23</i>), while changes in <i>ZNF23</i> expression were monitored by RT-qPCR, immunofluorescence, and western blot assays. Moreover, cell proliferation, cycle phase, and apoptosis were determined by EdU staining, flow cytometry, TUNEL staining, and Hoechst staining. Our data showed that miR-1246 was highly expressed in DDP-resistant OVCAR-3 and TOV-112D cells. Functionally, overexpression of miR-1246 markedly enhanced DDP resistance and cell proliferation, and suppressed cell cycle arrest and apoptosis of OC cells. Inhibition of miR-1246 expression significantly attenuated DDP resistance and cell proliferation, and increased cell cycle arrest and apoptosis in DDP-resistant OC cells. Furthermore, <i>ZNF23</i> was identified as a target gene of miR-1246, and ZNF23 protein expression was notably downregulated in DDP-resistant OC cells. Moreover, overexpression of miR-1246 significantly downregulated the <i>ZNF23</i> levels in OVCAR-3 and TOV-112D cells, and inhibition of miR-1246 upregulated the <i>ZNF23</i> levels in the DDP-resistant OVCAR-3 and TOV-112D cells. In conclusion, miR-1246 might be a novel regulator of DDP-resistant OC that functions by regulating <i>ZNF23</i> expression in DDP-resistant cells, as well as cell proliferation, cell cycle progression, and apoptosis.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tian-Jun Chen ◽  
Qi Zheng ◽  
Fei Gao ◽  
Tian Yang ◽  
Hui Ren ◽  
...  

Abstract Background MicroRNAs (miRNAs) are involved in the oncogenesis, development and transformation of lung squamous cell carcinoma (LUSC). miR-665 is clinically significant and acts as a pivotal function in some cancers. Nevertheless, the effects and the potential mechanisms of miR-665 in human LUSC are still unknown. Methods To analyse the clinical significant of miR-665 in human LUSC, quantitative real-time PCR (qRT-PCR) was use to measure miR-665 expression in LUSC specimen tissues and cell lines. Tripartite motif 8 (TRIM8) was verified a target of miR-665 by performing bioinformatic prediction and luciferase reporter assay. The expression levels of TRIM8 were examined through qRT-PCR and Western blotting in LUSC specimen tissues. CCK8 assay was fulfilled for analyzing the function in LUSC cell proliferation. Flow cytometry was used to detect cell and apoptosis. TRIM8 silencing and overexpression further verified the biological effects as those caused by miR-665. Results Here we reported that miR-665 expression was upregulated in LUSC specimen tissues and cell lines. High miR-665 levels were related to differentiation, tumor size and TNM stage. miR-665 mimics facilitated LUSC cell growth and cell cycle G1-S transition and repressed apoptosis. miR-665 inhibitor suppressed cell proliferation and G1-S transition and promoted apoptosis. miR-665 expression was negatively correlated with TRIM8 mRNA expression in LUSC. Luciferase reporter assay confirmed that TRIM8 was a direct target gene of miR-665. miR-665 mimics downregulated the TRIM8 levels, and miR-665 inhibitor upregulated the TRIM8 levels in LUSC cells. Particularly, silencing TRIM8 led to the similar effects of miR-665 mimics in LUSC cells. Overexpression of TRIM8 inhibited LUSC cell proliferation in vitro and in vivo. Furthermore, miR-665 promoted LUSC cell proliferation through facilitating the Wnt5a/β-catenin signaling pathway and restrained apoptosis via inhibiting Caspase-3 signaling pathway, whereas TRIM8 suppressed cell growth by repressing the Wnt5a/β-catenin signaling pathway and induced apoptosis through activating Caspase-3 signaling pathway. Conclusions The current study demonstrates that miR-665 facilitates LUSC cell proliferation and cell cycle transition by regulation of the Wnt5a/β-Catenin signaling pathway and represses cell apoptosis via modulation of Caspase-3 signaling pathway by directly targeting TRIM8. These findings suggest that miR-665 might be a potential new target for LUSC therapy.


2021 ◽  
Author(s):  
Min Zhang ◽  
Yu Sun ◽  
Hanzi Xu ◽  
Yaqian Shi ◽  
Rong Shen ◽  
...  

Abstract Background: Circular RNAs are a class of non-coding regulatory RNAs reported to be involved in cancer development and progression. Previous studies, including our own, have indicated that hsa_circ_0007444 was downregulated in ovarian cancer (OC) tissues. Herein, we demonstrated another mechanism of hsa_circ_0007444 in ovarian cancer.Methods: The expression of hsa_circ_0007444, miR-23a-3p, and DICER1 were determined by quantitative real-time PCR. Cell proliferation, invasion, migration, and apoptosis were examined by cell counting kit 8, transwell, and flow cytometry assays. The roles of hsa_circ_0007444 in tumor growth and metastasis were assessed in vivo using a nude mouse xenograft model. The bioinformatics tools were employed to predict the binding sites, which were then verified by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assays. DICER1 protein level was measured by western blot. Results: Hsa_circ_0007444 was downregulated in ovarian cancer cell lines compared with normal ovarian epithelial cell lines. Also, gain- and loss-of-function results indicated that hsa_circ_0007444 inhibited cell proliferation, invasion, migration, increased cell apoptosis of ovarian cancer cells in vitro, and impaired tumor growth and lung metastasis in vivo. Additionally, the results of the bioinformatics analysis, RIP, dual-luciferase reporter, and rescue assays confirmed that hsa_circ_0007444 could interact with AGO2 and sponge miR-23a-3p, thereby upregulating DICER1 expression, which was an important tumor suppressor in ovarian cancer.Conclusion: We found that overexpressed hsa_circ_0007444 could inhibit ovarian cancer progression through the hsa_circ_0007444/miR-23a-3p/DICER1 axis.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Chenyang Li ◽  
Yue Wang ◽  
Hao Wang ◽  
Bowen Wang ◽  
Yunxia Wang ◽  
...  

Objective. To explore the role and possible underlying mechanism of miR-486 in ovarian cancer (OC) cells. Methods. The expression of miR-486 and CADM1 was detected by qRT-PCR in OC tissues and adjacent nontumor tissues and OC cell lines. The dual-luciferase reporter gene system was used to determine the targeting relationship between miR-486 and CADM1. CCK-8, colony formation assay, Transwell, and flow cytometry were performed to detect cell proliferation, cell invasion, cell cycle progression, and the apoptotic cell death, respectively. Western blot was carried out to detect the expression of CADM1 protein and the proteins associated with cell cycle progression. Results. miR-486 was significantly upregulated in OC tissues and cells, while CADM1 expression was significantly downregulated. Dual-luciferase reporter assays further confirmed that CADM1 was a target gene of miR-486. Interference with miR-486 could inhibit the proliferation and invasion and promoted the apoptosis of SKOV3 cells. Knocking down both miR-486 and CADM1 significantly increased the SKOV3 cell proliferation, invasion, and the number of cells transitioning from the G0/G1 phase into the S phase of cell cycle and reduced the cellular apoptosis. Western blot analysis revealed that the expression of cell cycle progression-related proteins (CyclinD1, CyclinE, and CDK6) was significantly reduced, and the p21 expression was increased when interfering with both miR-486 and CADM1 expression. Conclusion. Our results suggested that miR-486 could act as a tumor promoter by targeting CADM1 and be a potential therapeutic target for the treatment of OC.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Huan Lu ◽  
Guanlin Zheng ◽  
Xiang Gao ◽  
Chanjuan Chen ◽  
Min Zhou ◽  
...  

Abstract Background Propofol is a kind of common intravenous anaesthetic agent that plays an anti-tumor role in a variety of cancers, including ovarian cancer. However, the working mechanism of Propofol in ovarian cancer needs further exploration. Methods The viability and metastasis of ovarian cancer cells were assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and transwell assays. Flow cytometry was used to evaluate the cell cycle and apoptosis. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to examine the abundance of circular RNA vacuolar protein sorting 13 homolog C (circVPS13C) and microRNA-145 (miR-145). The target relationship between miR-145 and circVPS13C was predicted by circinteractome database and verified by dual-luciferase reporter assay, RNA-binding protein immunoprecipitation (RIP) assay and RNA-pull down assay. Western blot assay was used to detect the levels of phosphorylated extracellular regulated MAP kinase (p-ERK), ERK, p-MAP kinse-ERK kinase (p-MEK) and MEK, in ovarian cancer cells. Results Propofol treatment suppressed the viability, cell cycle and motility and elevated the apoptosis rate of ovarian cancer cells. Propofol up-regulated miR-145 in a dose-dependent manner. Propofol exerted an anti-tumor role partly through up-regulating miR-145. MiR-145 was a direct target of circVPS13C. Propofol suppressed the progression of ovarian cancer through up-regulating miR-145 via suppressing circVPS13C. Propofol functioned through circVPS13C/miR-145/MEK/ERK signaling in ovarian cancer cells. Conclusion Propofol suppressed the proliferation, cell cycle, migration and invasion and induced the apoptosis of ovarian cancer cells through circVPS13C/miR-145/MEK/ERK signaling in vitro.


2021 ◽  
Vol 7 (5) ◽  
pp. 3997-4004
Author(s):  
Zhibo Zou ◽  
Lin Peng

Objective: This study aimed to probe into the effect of LncRNA SNHG14 on ovarian cancer progression by regulating miR-206.Methods: Fifty-seven ovarian cancer (OC) patients who were treated in our hospital from December 2017 to December 2019 were collected as the research objects. During the operation, OC tissues and paracancerous tissues of patients were collected, and the effect of SNHG14 on OC tumor growth in nude mice was detected, and SNHG14 inhibitor was transfected into OC cells. The relative expression of SNHG14 in tissues and cells was detected by qRT-PCR, cell proliferation was testedvia CCK8, migration and invasion were detected through Transwell, apoptosis was assessedvia flow cytometry, and the targeted relationship between SNHG14 and miR-206 was detected by dual luciferase reporter gene.Results: SNHG14 is highly expressed in OC tissues, cells and nude mice. Down-regulating it can inhibit the biological ability of OC cells and inhibit the growth of nude mice tumors. It can directly target miR-206 to regulate CCND1 expression and promote OC progression.Conclusion: LncRNA SNHG14 can act as miR-206 sponge to regulate CCND1 expression downstream of miR-206 and promote OC progression.


2020 ◽  
Author(s):  
Yi Gao ◽  
Yanfeng Wang ◽  
Xiaofei Wang ◽  
Changan Zhao ◽  
Fenghui Wang ◽  
...  

Abstract Background: In recent years, many microRNAs(miRNAs) involved in cancer progression. The aberrant expression of miR-335-5p in tumorigenesis has been demonstrated. The present study aimed to investigate the molecular mechanisms underlying miR-335-5p- regulated MAPK10 expression in human gastric cancer(GC).Methods: The quantitative real-time PCR was used to study the level of miR-335-5p expression in gastric cancer cell lines and tissues. Subsequently, the MTT and cloning formation assays were used to detect cell proliferation, while transwell and wound-healing assays were used to identify invasion and migration of the gastric cancer cells. The correlation between the miR-335-5p and the cell cycle-related target gene mitogen‑activated protein kinase 10 (MAPK10) in gastric cancer was analyzed based on the website. In addition, the target gene of miR-335-5p was detected by luciferase reporter assay, qRT-PCR, and western blotting.Results: The miR-335-5p level was down-regulated in GC tissues and cell lines. Furthermore, miR-335-5p inhibited proliferation, migration of gastric cancer cells, and induced apoptosis. During the G1/S phase, miR-335-5p arrested the cycle of gastric cancer cells in vitro. The correlation between the miR-335-5p and the cell cycle-related target gene MAPK10 in GC was analyzed, MAPK10 was directly targeted by the miR-335-5p.Conclusion: These data suggested that miR-335-5p acts as a tumor suppressor, and go through the MAPK10 to inhibit the GC progression.


2020 ◽  
Author(s):  
Juanjuan Shi ◽  
Xijian Xu ◽  
Dan Zhang ◽  
Jiuyan Zhang ◽  
Hui Yang ◽  
...  

Abstract Background: Long non-coding RNA PTPRG antisense RNA 1 (PTPRG-AS1) deregulation has been reported in various human malignancies and identified as an important modulator of cancer development. Few reports have focused on the detailed role of PTPRG-AS1 in epithelial ovarian cancer (EOC) and its underlying mechanism. This study aimed to determine the physiological function of PTPRG-AS1 in EOC. A series of experiments were also performed to identify the mechanisms through which PTPRG-AS1 exerts its function in EOC.Methods: Reverse transcription-quantitative polymerase chain reaction was used to determine PTPRG-AS1 expression in EOC tissues and cell lines. PTPRG-AS1 was silenced in EOC cells and studied with respect to cell proliferation, apoptosis, migration, and invasion in vitro and tumor growth in vivo. The putative miRNAs that target PTPRG-AS1 were predicted using bioinformatics analysis and further confirmed in luciferase reporter and RNA immunoprecipitation assays.Results: Our data verified the upregulation of PTPRG-AS1 in EOC tissues and cell lines. High PTPRG-AS1 expression was associated with shorter overall survival in patients with EOC. Functionally, EOC cell proliferation, migration, invasion in vitro, and tumor growth in vivo were suppressed by PTPRG-AS1 silencing. In contrast, cell apoptosis was promoted by loss of PTPRG-AS1. Regarding the mechanism, PTPRG-AS1 could serve as a competing endogenous RNA in EOC cells by decoying microRNA-545-3p (miR-545-3p), thereby elevating histone deacetylase 4 (HDAC4) expression. Furthermore, rescue experiments revealed that PTPRG-AS1 knockdown-mediated effects on EOC cells were, in part, counteracted by the inhibition of miR-545-3p or restoration of HDAC4.Conclusions: PTPRG-AS1 functioned as an oncogenic lncRNA that aggravated the malignancy of EOC through the miR-545-3p/HDAC4 ceRNA network. Thus, targeting the PTPRG-AS1/miR-545-3p/HDAC4 pathway may be a novel strategy for EOC anticancer therapy.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 1-2
Author(s):  
Yao Yao ◽  
Woojun D Park ◽  
Eugenio Morelli ◽  
Mehmet Kemal Samur ◽  
Nicholas P Kwiatkowski ◽  
...  

Deregulated transcription and cell cycle control are hallmarks of cancer that are especially frequent in multiple myeloma (MM). Largely non-overlapping sets of cyclin-dependent kinases (CDKs) regulate cell division and RNA polymerase II (Pol II)-dependent transcription; and targeting of cell cycle CDKs has been long pursued as an attractive therapeutic strategy. Among CDKs, CDK7 presents a unique therapeutic opportunity as it functions as a CDK activating kinase (CAK), licensing the activity of cell cycle CDKs, and also serves as a core component of the general transcription factor TFIIH. Here we elucidated the biological role of CDK7 and its transcriptional regulatory landscape in MM, using genetic as well chemical approaches, including tools for CDK7 rapid protein degradation (dTAG) and the selective covalent inhibitor YKL-5-124 that targets a cysteine residue (C312) located outside of the kinase domain. We have observed that CDK7 inhibition via YKL-5-124 robustly inhibited the phosphorylation of the CDK1, 2 and 4 activation loops in a representative panel of MM cell lines at concentrations as low as 50 nM. This reduction was not observed in MM cells expressing a resistant mutation in the reactive cysteine (C312S). Consistent with decrease of CAK activity, we observed G1 arrest and S phase loss after CDK7 inhibition, which was also associated with a rapid and transient loss of Ser2 and Ser5 phosphorylation of the RNA Pol2 C-terminal domain. To understand the effect of CDK7 inhibition on MM cell growth and viability, we evaluated activity of YKL-5-124 across a large panel of 25 MM cell lines and observed a significant inhibition of MM cell proliferation, with a significantly lower IC50 compared to PHA-activated normal donor peripheral blood mononuclear cells (PBMCs), suggesting a specific sensitivity of MM cells to CDK7 inhibition. Longer exposure to YKL-5-124 caused apoptotic cell death in MM cells; however treatment with an inactive analog or in cells expressing the C312S mutation failed to inhibit MM cell proliferation, confirming that the antiproliferative potency of YKL-5-124 resides in its unique characteristic to covalently bind to C312 domain. Importantly, CDK7 inhibition impaired primary MM cells proliferation alone and when cultured in the presence of BM microenvironment. Selective pharmacological degradation of endogenously tagged CDK7 confirmed impact of CDK7 inhibition on MM cell proliferation via inhibition of CDK7 transcriptional and cell cycle activities. To complement the pharmacological studies, we have established MM cells to express inducible CRISPR/Cas9 constructs encoding 4 independent small guide RNAs targeting CDK7, resulting in the reduction of the abundance of CDK7 protein by 20-60% which was sufficient to inhibit MM cell viability over time, phenocopying pharmacologic inhibition of CDK7. These results support the view that CDK7 is a pharmacologically relevant target for MM. Gene expression analysis after CDK7 inhibition in MM1S and H929 cells revealed that transcripts for only a subset of genes were substantially affected by treatment with low dose of YKL-5-124, showing a strong leading-edge enrichment for downregulation of E2F expression program, cell cycle, DNA damage, and MYC targets. We have indeed confirmed a potent reduction in phosphorylation of RB protein, with consequent decrease of E2F activity in MM cells confirmed using E2F-driven luciferase reporter. These data suggest significant role for CDK7 in the CDK-pRB-E2F pathway in MM, which was strengthened by the observation of a positive correlation between expression of CDK7 and expression of E2F target genes in primary MM cells (n=409). Finally, we have evaluated the in vivo effect of CDK7 inhibition in several murine models of human MM. In the localized subcutaneous model, and the disseminated MM model where treatment with YKL-5-124 decreased tumor burden and improved survival. The effect of CDK7 inhibition explored in an aggressive, genetically engineered model of Myc-dependent MM, revealed evidence of response by decline in measurement of monotypic serum immunoglobulins. In conclusion, our study demonstrates that CDK7 contributes to the 'transcriptional addiction' and the cell cycle deregulation frequently observed in MM and represents an attractive molecular vulnerability to be exploited therapeutically. Disclosures Anderson: Millenium-Takeda: Membership on an entity's Board of Directors or advisory committees; Gilead: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Sanofi-Aventis: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Oncopep and C4 Therapeutics.: Other: Scientific Founder of Oncopep and C4 Therapeutics.; Celgene: Membership on an entity's Board of Directors or advisory committees. Munshi:Takeda: Consultancy; Karyopharm: Consultancy; AbbVie: Consultancy; Amgen: Consultancy; Legend: Consultancy; Adaptive: Consultancy; Janssen: Consultancy; C4: Current equity holder in private company; OncoPep: Consultancy, Current equity holder in private company, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties; BMS: Consultancy. Fulciniti:NIH: Research Funding.


2017 ◽  
Vol 41 (4) ◽  
pp. 1519-1531 ◽  
Author(s):  
Beibei Bie ◽  
Jin Sun ◽  
Jun Li ◽  
Ying Guo ◽  
Wei Jiang ◽  
...  

Background/Aims: Baicalein has been shown to possess significant anti-hepatoma activity by inhibiting cell proliferation. Whether the anti-proliferative effect of baicalein is related to its modulation of miRNA expression in hepatocellular carcinoma (HCC) is still unknown. Methods: The anti-proliferative effects of baicalein on HCC cell line Bel-7402 was assessed by detecting the proliferation activity, cell cycle distribution, expression changes of p21/CDKN1A, P27/CDKN1B, total Akt and phosphoryted AKT. Microarray analysis was conducted to determine the miRNA expression profiles in baicalein-treated or untreated Bel-7402 cells and then validated by qRT-PCR in two HCC cell lines (Bel-7402 and Hep3B). The gain-of-function of miR-3127-5p was performed by detecting anti-proliferative effects after transfecting miRNA mimics in cells. Finally, the expression level of miR-3127-5p in different HCC cell lines was determined by qRT-PCR. Results: Baicalein was able to inhibit the proliferation of Bel-7402 cells by inducing cell cycle arrest at the S and G2/M phase via up-regulating the expression of p21/CDKN1A and P27/CDKN1B and suppressing the PI3K/Akt pathway. Baicalein could alter the miRNA expression profiles in Bel-7402 cells. Putative target genes for differentially expressed miRNAs could be enriched in terms of cell proliferation regulation, cell cycle arrest and were mainly involved in MAPK, PI3K-Akt, Wnt, Hippo and mTOR signaling pathways. MiR- 3127-5p, one of up-regulated miRNAs, exhibits low expression level in several HCC cell lines and its overexpression could inhibit cell growth of Bel-7402 and Hep3B cell lines by inducing S phase arrest by up-regulating the expression of p21and P27 and repressing the PI3K/Akt pathway. Conclusions: Modulation of miRNA expression may be an important mechanism underlying the anti-hepatoma effects of baicalein.


Sign in / Sign up

Export Citation Format

Share Document