scholarly journals FimH as a scaffold for regulated molecular recognition

2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Shivani Gupta Ludwig ◽  
Casey L. Kiyohara ◽  
Laura A. Carlucci ◽  
Dagmara Kisiela ◽  
Evgeni V. Sokurenko ◽  
...  

Abstract Background Recognition proteins are critical in many biotechnology applications and would be even more useful if their binding could be regulated. The current gold standard for recognition molecules, antibodies, lacks convenient regulation. Alternative scaffolds can be used to build recognition proteins with new functionalities, including regulated recognition molecules. Here we test the use of the bacterial adhesin FimH as a scaffold for regulated molecular recognition. FimH binds to its native small molecule target mannose in a conformation-dependent manner that can be regulated by two types of noncompetitive regulation: allosteric and parasteric. Results We demonstrate that conformational regulation of FimH can be maintained even after reengineering the binding site to recognize the non-mannosylated targets nickel or Penta-His antibody, resulting in an up to 7-fold difference in KD between the two conformations. Moreover, both the allosteric and parasteric regulatory mechanisms native to FimH can be used to regulate binding to its new target. In one mutant, addition of the native ligand mannose parasterically improves the mutant’s affinity for Penta-His 4-fold, even as their epitopes overlap. In another mutant, the allosteric antibody mab21 reduces the mutant’s affinity for Penta-His 7-fold. The advantage of noncompetitive regulation is further illustrated by the ability of this allosteric regulator to induce 98% detachment of Penta-His, even with modest differences in affinity. Conclusions This illustrates the potential of FimH, with its deeply studied conformation-dependent binding, as a scaffold for conformationally regulated binding via multiple mechanisms.

2002 ◽  
Vol 80 (8) ◽  
pp. 1112-1130 ◽  
Author(s):  
T L Lowary ◽  
E Eichler ◽  
D R Bundle

A series of monosaccharide (4–6), disaccharide (3,7–12), and trisaccharide (13–15) analogs of the native ligand 2, which fills the binding site of monoclonal antibody Se 155.4, have been synthesized and their bioactivity measured by solid- and solution-phase assays. The syntheses of disaccharide analogs sought to replace galactose by various alkyl groups at the O-2 position of mannose. The activity of one of these O-2 alkyl analogs was 75% of that observed for the trisaccharide and points to only weak net bonding between the solvent exposed galactose residue and the antibody binding site. The synthesis of talose analogs 13 and 14, where the mannose or galactose residues of 2 were replaced by talose produced ligands with activities from one-third to one-half of that seen for the native ligand 2. These activity changes did not exhibit discernable correlations with the ability of talose to disrupt water of solvation.Key words: abequose, 3,6-dideoxy-D-xylo-hexose, talose disaccharide and trisaccharide, antibody oligosaccharide interactions, molecular recognition of carbohydrates, water in antibody complexes, Salmonella LPS, monoclonal antibody Se 155.4, bacterial O-antigen.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Ke-Wu Zeng ◽  
Jing-Kang Wang ◽  
Li-Chao Wang ◽  
Qiang Guo ◽  
Ting-Ting Liu ◽  
...  

AbstractMitochondrial fusion/fission dynamics plays a fundamental role in neuroprotection; however, there is still a severe lack of therapeutic targets for this biological process. Here, we found that the naturally derived small molecule echinacoside (ECH) significantly promotes mitochondrial fusion progression. ECH selectively binds to the previously uncharacterized casein kinase 2 (CK2) α′ subunit (CK2α′) as a direct cellular target, and genetic knockdown of CK2α′ abolishes ECH-mediated mitochondrial fusion. Mechanistically, ECH allosterically regulates CK2α′ conformation to recruit basic transcription factor 3 (BTF3) to form a binary protein complex. Then, the CK2α′/BTF3 complex facilitates β-catenin nuclear translocation to activate TCF/LEF transcription factors and stimulate transcription of the mitochondrial fusion gene Mfn2. Strikingly, in a mouse middle cerebral artery occlusion (MCAO) model, ECH administration was found to significantly improve cerebral injuries and behavioral deficits by enhancing Mfn2 expression in wild-type but not CK2α′+/− mice. Taken together, our findings reveal, for the first time, that CK2 is essential for promoting mitochondrial fusion in a Wnt/β-catenin-dependent manner and suggest that pharmacologically targeting CK2 is a promising therapeutic strategy for ischemic stroke.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sara Busacca ◽  
Qi Zhang ◽  
Annabel Sharkey ◽  
Alan G. Dawson ◽  
David A. Moore ◽  
...  

AbstractWe hypothesized that small molecule transcriptional perturbation could be harnessed to target a cellular dependency involving protein arginine methyltransferase 5 (PRMT5) in the context of methylthioadenosine phosphorylase (MTAP) deletion, seen frequently in malignant pleural mesothelioma (MPM). Here we show, that MTAP deletion is negatively prognostic in MPM. In vitro, the off-patent antibiotic Quinacrine efficiently suppressed PRMT5 transcription, causing chromatin remodelling with reduced global histone H4 symmetrical demethylation. Quinacrine phenocopied PRMT5 RNA interference and small molecule PRMT5 inhibition, reducing clonogenicity in an MTAP-dependent manner. This activity required a functional PRMT5 methyltransferase as MTAP negative cells were rescued by exogenous wild type PRMT5, but not a PRMT5E444Q methyltransferase-dead mutant. We identified c-jun as an essential PRMT5 transcription factor and a probable target for Quinacrine. Our results therefore suggest that small molecule-based transcriptional perturbation of PRMT5 can leverage a mutation-selective vulnerability, that is therapeutically tractable, and has relevance to 9p21 deleted cancers including MPM.


2021 ◽  
Vol 22 (3) ◽  
pp. 1482 ◽  
Author(s):  
Machteld Sillen ◽  
Toshio Miyata ◽  
Douglas E. Vaughan ◽  
Sergei V. Strelkov ◽  
Paul J. Declerck

Plasminogen activator inhibitor-1 (PAI-1), a key regulator of the fibrinolytic system, is the main physiological inhibitor of plasminogen activators. By interacting with matrix components, including vitronectin (Vn), PAI-1 plays a regulatory role in tissue remodeling, cell migration, and intracellular signaling. Emerging evidence points to a role for PAI-1 in various pathological conditions, including cardiovascular diseases, cancer, and fibrosis. Targeting PAI-1 is therefore a promising therapeutic strategy in PAI-1-related pathologies. A class of small molecule inhibitors including TM5441 and TM5484, designed to bind the cleft in the central β-sheet A of PAI-1, showed to be potent PAI-1 inhibitors in vivo. However, their binding site has not yet been confirmed. Here, we report two X-ray crystallographic structures of PAI-1 in complex with TM5484. The structures revealed a binding site at the flexible joint region, which is distinct from the presumed binding site. Based on the structural analysis and biochemical data we propose a mechanism for the observed dose-dependent two-step mechanism of PAI-1 inhibition. By binding to the flexible joint region in PAI-1, TM5484 might restrict the structural flexibility of this region, thereby inducing a substrate form of PAI-1 followed by a conversion to an inert form.


Blood ◽  
1998 ◽  
Vol 91 (4) ◽  
pp. 1185-1195 ◽  
Author(s):  
Taiho Kambe ◽  
Junko Tada ◽  
Mariko Chikuma ◽  
Seiji Masuda ◽  
Masaya Nagao ◽  
...  

Abstract Embryonic stem cells and embryonal carcinoma P19 cells produce erythropoietin (Epo) in an oxygen-independent manner, although lactate dehydrogenase A (LDHA) is hypoxia-inducible. To explore this paradox, we studied the operation of cis-acting sequences from these genes in P19 and Hep3B cells. The Epo gene promoter and 3′ enhancer from P19 cells conveyed hypoxia-inducible responses in Hep3B cells but not in P19 cells. Together with DNA sequencing and the normal transcription start site of P19 Epo gene, this excluded the possibility that the noninducibility of Epo gene in P19 cells was due to mutation in these sequences or unusual initiation of transcription. In contrast, reporter constructs containing LDHA enhancer and promoter were hypoxia inducible in P19 and Hep3B cells, and mutation of a hypoxia- inducible factor 1 (HIF-1) binding site abolished the hypoxic inducibility in both cells, indicating that HIF-1 activation operates normally in P19 cells. Neither forced expression of hepatocyte nuclear factor 4 in P19 cells nor deletion of its binding site from the Epo enhancer was effective in restoring Epo enhancer function. P19 cells may lack an unidentified regulator(s) required for interaction of the Epo enhancer with Epo and LDHA promoters.


2002 ◽  
Vol 28 (3) ◽  
pp. 193-205 ◽  
Author(s):  
J Quirk ◽  
P Brown

The homeobox repressor Hesx1, expressed throughout Rathke's pouch and required for normal pituitary development, has been implicated in anterior pituitary pathogenesis in man. Prolonged expression of Hesx1 delays the appearance of anterior pituitary terminal differentiation markers in mice, particularly the gonadotroph hormones. We tested if Hesx1 could modulate gonadotrophin gene expression directly, and found that Hesx1 repressed both common alpha subunit (alpha GSU) and luteinising hormone beta-subunit (LH beta) gene promoters. Repression mapped to the Pitx1 homeodomain protein transactivation site in the proximal alpha GSU promoter, but did not map to the equivalent site on LH beta. Hesx1 repression of the alpha GSU Pitx1 site was overridden by co-transfection of Pitx1. In contrast, Hesx1 antagonised Pitx1 transactivation of LH beta in a dose-dependent manner. This was due to monomeric binding of Hesx1 on alpha GSU and homodimerisation on LH beta. The homodimerisation site comprises the Pitx1 DNA binding site and a proximal binding site, and mutation of either inhibited homodimer formation. Conversion of the LH beta Pitx1 DNA binding site to an alpha GSU-type did not promote homodimer formation, arguing that Hesx1 has pronounced site selectivity. Furthermore, mutation of the proximal half of the homodimerisation site blocked Hesx1 antagonisation of Pitx1 transactivation. We conclude that Hesx1 monomers repress gene expression, and homodimers block specific transactivation sites.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 630
Author(s):  
Hawon Yoo ◽  
Seul-Ki Choi ◽  
Jaeok Lee ◽  
So Hyeon Park ◽  
You Na Park ◽  
...  

Relationships between heat shock protein 27 (HSP27) and cancer aggressiveness, metastasis, drug resistance, and poor patient outcomes in various cancer types including non-small cell lung cancer (NSCLC) were reported, and inhibition of HSP27 expression is suggested to be a possible strategy for cancer therapy. Unlike HSP90 or HSP70, HSP27 does not have an ATP-binding pocket, and no effective HSP27 inhibitors have been identified. Previously, NSCLC cancer cells were sensitized to radiation and chemotherapy when co-treated with small molecule HSP27 functional inhibitors such as zerumbone (ZER), SW15, and J2 that can induce abnormal cross-linked HSP27 dimer. In this study, cancer inhibition effects of NA49, a chromenone compound with better solubility, longer circulation time, and less toxicity than J2, were examined in combination with anticancer drugs such as cisplatin and gefitinib in NSCLC cell lines. When the cytotoxic drug cisplatin was treated in combination with NA49 in epidermal growth factor receptors (EGFRs) WT cell lines, sensitization was induced in an HSP27 expression-dependent manner. With gefitinib treatment, NA49 showed increased combination effects in both EGFR WT and Mut cell lines, also with HSP27 expression-dependent patterns. Moreover, NA49 induced sensitization in EGFR Mut cells with a secondary mutation of T790M when combined with gefitinib. Augmented tumor growth inhibition was shown with the combination of cisplatin or gefitinib and NA49 in nude mouse xenograft models. These results suggest the combination of HSP27 inhibitor NA49 and anticancer agents as a candidate for overcoming HSP27-mediated drug resistance in NSCLC patients.


2018 ◽  
Vol 38 (6) ◽  
Author(s):  
Xiaochun Xue ◽  
Jianhua Wu ◽  
Junhui Li ◽  
Jianguo Xu ◽  
Haiying Dai ◽  
...  

It was previously reported that the expression of CD274 was down-regulated in psoriatic epidermis, leading to immune disorders of psoriasis. However, the regulatory mechanisms of CD274 were rarely elucidated. We aimed to explore the regulatory mechanisms of CD274. Skin samples were collected from 18 patients with psoriasis vulgaris and 9 healthy participants for RNA sequencing. Candidate genes were chosen based on degree and k-core difference of genes in the co-expression network. The relations between candidate genes and CD274 were validated by flow cytometry and real-time PCR in primary human epidermal keratinocytes. The therapeutic effect of indirubin was assessed in an imiquimod-treated mouse model. Interferon-γ (IFN-γ), cyclin-dependent kinase (CDK) 1, Toll-like receptor 3 (TLR3), TLR4 and interleukin (IL)-17A were considered as candidate genes. In primary human epidermal keratinocytes, the level of CD274 was obviously increased under the stimulation of IFN-γ and CDK1 inhibitor (indirubin), independent of TLR4, TLR3 or IL-17A. Indirubin alleviated the severity of psoriatic mice in a CD274-dependent manner. Co-expression network analysis served as an effective method for the exploration of molecular mechanisms. We demonstrated for the first time that CD274 was the regulator of indirubin-mediated effect on mouse psoriasis-like skin lesion based on co-expression network analysis, contributing to the alleviation of mouse psoriasis-like skin lesion.


Sign in / Sign up

Export Citation Format

Share Document