scholarly journals Surveillance of Aedes aegypti populations in the city of Praia, Cape Verde: Zika virus infection, insecticide resistance and genetic diversity

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Monica Campos ◽  
Daniel Ward ◽  
Raika Francesca Morales ◽  
Ana Rita Gomes ◽  
Keily Silva ◽  
...  

Abstract Background Aedes spp. are responsible for the transmission of many arboviruses, which contribute to rising human morbidity and mortality worldwide. The Aedes aegypti mosquito is a main vector for chikungunya, dengue and yellow fever infections, whose incidence have been increasing and distribution expanding. This vector has also driven the emergence of the Zika virus (ZIKV), first reported in Africa which spread rapidly to Asia and more recently across the Americas. During the outbreak in the Americas, Cape Verde became the first African country declaring a Zika epidemic, with confirmed cases of microcephaly. Here we investigate the prevalence of ZIKV and dengue (DENV) infected Ae. aegypti mosquitoes in the weeks following the outbreak in Cape Verde, and the presence of insecticide resistance in the circulating vector population. Genetic diversity in the mosquito population was also analysed. Methods From August to October 2016, 816 Ae. aegypti mosquitoes were collected in several locations across Praia, Cape Verde, the major hot spot of reported ZIKV cases in the country. All mosquitoes were screened by reverse transcription PCR for ZIKV and DENV, and a subset (n = 220) were screened for knockdown insecticide resistance associated mutations in the voltage gated sodium channel (VGSC) gene by capillary sequencing. The mitochondrial NADH dehydrogenase subunit 4 (nad4) gene was sequenced in 100 mosquitoes. These data were compared to 977 global sequences in a haplotype network and a phylogenetic tree analysis. Results Two Ae. aegypti mosquitoes were ZIKV positive (0.25%). There were no SNP mutations found in the VGSC gene associated with insecticide resistance. Analysis of the nad4 gene revealed 11 haplotypes in the Cape Verdean samples, with 5 being singletons. Seven haplotypes were exclusive to Cape Verde. Several of the remaining haplotypes were frequent in the global dataset, being present in several countries (including Cape Verde) across five different continents. The most common haplotype in Cape Verde (50.6 %) was also found in Africa and South America. Conclusions There was low-level Zika virus circulation in mosquitoes from Praia shortly after the outbreak. The Ae. aegypti population did not appear to have the kdr mutations associated with pyrethroid resistance. Furthermore, haplotype and phylogenetic analyses revealed that Cape Verde Ae. aegypti mosquitoes are most closely related to those from other countries in Africa and South America.

Author(s):  
Casey Parker-Crockett ◽  
C Roxanne Connelly ◽  
Blair Siegfried ◽  
Barry Alto

Abstract The vector competence of mosquitoes for pathogens has been shown to be influenced by the status of insecticide resistance in the mosquito population. However, to date, only two studies has explored the impact of insecticide resistance on arbovirus transmission. The global and widespread use of pyrethroids has led to the development of insecticide resistance in many mosquito species, including Aedes aegypti (Linnaeus) (Diptera: Culicidae), the primary vector of Zika virus. Strains of Ae. aegypti that were genetically similar, but responded differently to pyrethroid exposure, were developed using backcrossing techniques. These populations were orally infected with Zika virus and susceptibility to infection, disseminated infection, and transmission potential were evaluated. Analyses revealed differences in susceptibility to infection and disseminated infection between the pyrethroid susceptible and resistant strains of Ae. aegypti during the infection period. Here, we identify an additional challenge to that of widespread pyrethroid resistance. Specifically, resistance is associated with altered phenotypic traits that influence susceptibility to arbovirus infection and progression of infection in the mosquito, factors which ultimately influence risk of arbovirus transmission. These findings support the need to 1) consider insecticide resistance status during times of arbovirus transmission and 2) to implement insecticide resistance management/ mitigation strategies in vector control programs.


Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 124
Author(s):  
Keenan Amer ◽  
Karla Saavedra-Rodriguez ◽  
William C. Black ◽  
Emilie M. Gray

The study of fitness costs of insecticide resistance mutations in Aedes aegypti has generally been focused on life history parameters such as fecundity, mortality, and energy reserves. In this study we sought to investigate whether trade-offs might also exist between insecticide resistance and other abiotic stress resistance parameters. We evaluated the effects of the selection for permethrin resistance specifically on larval salinity and thermal tolerance. A population of A. aegypti originally from Southern Mexico was split into two strains, one selected for permethrin resistance and the other not. Larvae were reared at different salinities, and the fourth instar larvae were subjected to acute thermal stress; then, survival to both stresses was compared between strains. Contrary to our predictions, we found that insecticide resistance correlated with significantly enhanced larval thermotolerance. We found no clear difference in salinity tolerance between strains. This result suggests that insecticide resistance does not necessarily carry trade-offs in all traits affecting fitness and that successful insecticide resistance management strategies must account for genetic associations between insecticide resistance and abiotic stress resistance, as well as traditional life history parameters.


2021 ◽  
Vol 21 (3) ◽  
pp. 1124-1140
Author(s):  
Mohd Rohaizat Hassan ◽  
Noor Atika Azit ◽  
Suhaiza Mohd Fadzil ◽  
Siti Rasidah Abd Ghani ◽  
Norfazilah Ahmad ◽  
...  

Background: The insecticides used widely has led to resistance in the vector and impose a challenge to vector control op- eration. Objectives: This review aims to analyse the distribution of insecticide resistance of dengue vectors in South East Asia and to describe the mechanism of insecticide resistance. Methods: Literature search for articles published on 2015 to 2019 from PubMed, Scopus and ProQuest was performed. Total of 37 studies included in the final review from the initial 420 studies. Results: Pyrethroid resistance was concentrated on the west coast of Peninsular Malaysia and Northern Thailand and scat- tered at Java Island, Indonesia while organophosphate resistance was seen across the Java Island (Indonesia), West Sumatera and North Peninsular Malaysia. Organochlorine resistance was seen in Sabah, Malaysia and scattered distribution in Nusa Tenggara, Indonesia. V1016G, S989P, F1269C gene mutation in Aedes Aegypti were associated with Pyrethroid resistance in Singapore and Indonesia. In Malaysia, over-expressed with monooxygenase P450 genes (CYP9J27, CYP6CB1, CYP9J26 and CYP9M4) Glutathione S-transferases, carboxylesterases commonly associated with pyrethroids resistance in Aedes Aegypti and CYP612 overexpressed in Aedes Albopictus. The genetic mutation in A302S in Aedes Albopictus was associated with organochlorine resistance in Malaysia. Conclusions: Rotation of insecticide, integration with synergist and routine assessment of resistance profile are recom- mended strategies in insecticide resistance management. Keywords: Insecticide resistance; vector management; Aedes; pyrethroid; mortality.


2020 ◽  
Author(s):  
Juli R. Wuliandari ◽  
Ary A. Hoffmann ◽  
Warsito Tantowijoyo ◽  
Nancy M. Endersby-Harshman

Abstract Background : In the inner city of Yogyakarta, Indonesia, insecticide resistance is expected in the main dengue vector, Aedes aegypti , because of the intensive local application of pyrethroid insecticides. However, detailed information about the nature of resistance in this species is required to assist the release of Wolbachia mosquitoes in a dengue control program so that we can ensure that insecticide resistance in the strain of Ae. aegypti being released matches that of the background population. Methods: High-resolution melt genotyping was used to screen for kdr mutations associated with pyrethroid resistance in the voltage-sensitive sodium channel (V SSC ) gene in Ae. aegypti of some areas in the inner city of Yogyakarta. Results: The results show that the V1016G mutation predominated, with individuals homozygous for the 1016G allele at a frequency of 82.1% and the mutant allele G at a frequency of 92%. Two patterns of co-occurrence of mutations were detected in this study, homozygous individuals V1016G/S989P; and heterozygous individuals V1016G/F1534C/S989P. We found the simultaneous occurrence of kdr mutations V1016G and F1534C at all collection sites, but not within individual mosquitoes. Homozygous mutants at locus 1016 were homozygous wildtype at locus 1534 and vice versa, and heterozygous V1016G were also heterozygous for F1534C. The most common tri-locus genotype co-occurrences were homozygous mutant 1016GG and homozygous wild-type FF1534, combined with homozygous mutant 989PP (GG/FF/PP) at a frequency of 38.28%. Conclusions: Given the relatively small differences in frequency of resistance alleles across the city area, locality variations in resistance should have minor implications for the success of Wolbachia mosquito trials being undertaken in the Yogyakarta area.


2018 ◽  
Vol 3 ◽  
pp. 79
Author(s):  
Basile Kamgang ◽  
Theodel A. Wilson-Bahun ◽  
Helen Irving ◽  
Michael O. Kusimo ◽  
Arsene Lenga ◽  
...  

Background: The arbovirus vector, Aedes albopictus, originating from Asia, has recently invaded African countries, including the Republic of the Congo, where it was associated with a chikungunya outbreak. Up until now, little was known about its distribution in relation to the native Aedes aegypti and how the invasion will modify the epidemiology of arboviral diseases. Here, we assessed the current distribution of Ae. albopictus and Ae. aegypti in the Republic of the Congo and explored the genetic diversity of the invading species, Ae. albopictus. Methods: Immature stages of Aedes were collected in nine locations in the Republic of the Congo in 2017 following a north-south transect and reared to adult stage. Adults were morphologically identified, counted and grouped according to species and location. Genetic diversity of Ae. albopictus was assessed by analyzing the cytochrome oxidase I (COI) gene. Results: Ae. albopictus and Ae. aegypti were found together across the country in all the locations investigated. The invasive species is predominant over the native species in all locations except Brazzaville, suggesting that Ae. albopictus is displacing Ae. aegypti across Congo. When comparing the species distributions across the two largest cities, Brazzaville and Pointe Noire, Ae. albopictus was more prevalent than Ae. aegypti in the suburbs whereas the opposite situation was reported in the city centre. Mitochondrial DNA analysis revealed very low genetic diversity of Ae. albopictus with only three haplotypes recorded across the country supporting the recent introduction of this species in the Republic of the Congo. Phylogenetic tree analysis revealed that Ae. albopictus from Congo originated from other tropical Asian countries such as China, likely as a result of increasing trade links. Conclusion: These findings are important for the implementation of vector control strategies and can serve as a foundation for further research on these vectors in the country.


2011 ◽  
Vol 101 (4) ◽  
pp. 435-441 ◽  
Author(s):  
K.A. Polson ◽  
S.C. Rawlins ◽  
W.G. Brogdon ◽  
D.D. Chadee

AbstractInsecticide resistance is an important factor in the effectiveness of Aedes aegypti control and the related spread of dengue. The objectives of this study were to investigate the status of the organochlorine dichlorodiphenyltrichloroethane (DDT) and pyrethroid (permethrin and deltamethrin) resistance in Trinidad and Tobago populations of Ae. aegypti and the underlying biochemical mechanisms. Nine populations of Ae. aegypti larvae from Trinidad and Tobago were assayed to DDT and PYs using the Centers for Disease Control and Prevention (CDC) time-mortality-based bioassay method. A diagnostic dosage (DD) was established for each insecticide using the CAREC reference susceptible Ae. aegypti strain and a resistance threshold (RT), time in which 98–100% mortality was observed in the CAREC strain, was calculated for each insecticide. Mosquitoes which survived the DD and RT were considered as resistant, and the resistance status of each population was categorised based on the WHO criteria with mortality <80% indicative of resistance. Biochemical assays were conducted to determine the activities of α and β esterases, mixed function oxidases (MFO) and glutathione-S-transferases (GST) enzymes which are involved in resistance of mosquitoes to DDT and PYs. Enzymatic activity levels in each population were compared with those obtained for the CAREC susceptible strain, and significant differences were determined by Kruskal-Wallis and Tukey's non-parametric tests (P<0.05). The established DDs were 0.01 mg l−1, 0.2 mg l−1 and 1.0 mg l−1 for deltamethrin, permethrin and DDT, respectively; and the RTs for deltamethrin, permethrin and DDT were 30, 75 and 120 min, respectively. All Ae. aegypti populations were resistant to DDT (<80% mortality); two strains were incipiently resistant to deltamethrin and three to permethrin (80–98% mortality). Biochemical assays revealed elevated levels of α-esterase and MFO enzymes in all Ae. aegypti populations. All, except three populations, showed increased levels of β-esterases; and all populations, except Curepe, demonstrated elevated GST levels.Metabolic detoxification of enzymes is correlated with the manifestation of DDT and PY resistance in Trinidad and Tobago populations of Ae. aegypti. The presence of this resistance also suggests that knock down (kdr)-type resistance may be involved, hence the need for further investigations. This information can contribute to the development of an insecticide resistance surveillance programme and improvement of resistance management strategies aimed at combatting the spread of dengue in Trinidad and Tobago.


Insects ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 386
Author(s):  
Taylor C. Clarkson ◽  
Ashley J. Janich ◽  
Irma Sanchez-Vargas ◽  
Erin D. Markle ◽  
Megan Gray ◽  
...  

We tested a nootkatone product for insecticide activity against the most prominent vectors of Zika virus (ZIKV), Aedes aegypti, and Aedes albopictus. We tested the permethrin-resistant (PERM-R) Vergel strain of A. aegypti and the permethrin-susceptible (PERM-S) New Orleans strain of A. aegypti to determine if insecticide resistance affected their susceptibility to nootkatone. Bottle bioassays showed that the PERM-S strain (New Orleans) was more susceptible to nootkatone than the confirmed A. aegypti permethrin-resistant (PERM-R) strain, Vergel. The A. albopictus strain ATM-NJ95 was a known PERM-S strain and Coatzacoalcos permethrin susceptibility was unknown but proved to be similar to the ATM-NJ95 PERM-S phenotype. The A. albopictus strains (ATM-NJ95 and Coatzacoalcos) were as susceptible to nootkatone as the New Orleans strain. Bottle bioassays conducted with ZIKV-infected mosquitoes showed that the New Orleans (PERM-S) strain was as susceptible to nootkatone as the mock-infected controls, but the PERM-R strain was less susceptible to nootkatone than the mock-infected controls. Repellency/irritancy and biting inhibition bioassays (RIBB) of A. aegypti determined whether the nootkatone-treated arms of three human subjects prevented uninfected A. aegypti mosquitoes from being attracted to the test subjects and blood-feeding on them. The RIBB analyses data calculated the spatial activity index (SAI) and biting inhibition factor (BI) of A. aegypti at different nootkatone concentrations and then compared the SAI and BI of existing repellency products. We concluded that nootkatone repelled mosquitoes at a rate comparable to 7% DEET or 5% picaridin and has the potential to be an efficacious repellent against adult A. aegypti mosquitoes.


2017 ◽  
Author(s):  
James Weger-Lucarelli ◽  
Selene M. Garcia ◽  
Claudia Rückert ◽  
Alex Byas ◽  
Shelby L. O’Connor ◽  
...  

ABSTRACTArboviruses such as Zika virus (ZIKV, Flaviviridae; Flavivirus) replicate in both mammalian and insect hosts where they encounter a variety of distinct host defenses. To overcome these pressures, arboviruses exist as diverse populations of distinct genomes. However, transmission between hosts and replication within hosts can involve genetic bottlenecks, during which population size and viral diversity may be significantly reduced, potentially resulting in large fitness losses. Understanding the points at which bottlenecks exist during arbovirus transmission is critical to identifying targets for preventing transmission. To study these bottleneck effects, we constructed 4 “barcoded” ZIKV clones - 2 with an 8-base-pair degenerate insertion in the 3’ UTR and 2 with 8 or 9 degenerate synonymous changes in the coding sequence, theoretically containing thousands of variants each. We passaged these viruses 3 times each in 2 mammalian and 2 mosquito cell lines and characterized selection of the “barcode” populations using deep sequencing. Additionally, the viruses were used to feed three recently field-caught populations of Aedes aegypti mosquitoes to assess bottlenecks in a natural host. The barcoded viruses replicated well in multiple cell lines in vitro and in vivo in mosquitoes and could be characterized using next-generation sequencing. The stochastic nature of mosquito transmission was clearly shown by tracking individual barcodes in Ae. aegypti mosquitoes. Barcoded viruses provide an efficient method to examine bottlenecks during virus infection.AUTHOR SUMMARYIn general, mosquito-borne viruses like ZIKV must replicate in two very different host environments: an insect and a mammalian host. RNA viruses such as ZIKV must maintain genetic diversity in order to adapt to these changing conditions. During this transmission cycle, several barriers exist which can severely restrict viral genetic diversity, causing bottlenecks in the virus population. It is critical to understand these bottlenecks during virus transmission as this will provide important insights into the selective forces shaping arbovirus evolution within and between hots. Here, we employ a set of barcoded ZIKV constructs containing a degenerate stretch of nucleotides that can be tracked using next-generation sequencing. We found that the insertion site in the genome was an important determinant of the resulting diversity of the genetic barcode. We also found that bottlenecks varied between different mosquito populations and patterns of genetic diversity were distinct among individual mosquitoes within a single population, highlighting the randomness of virus dissemination in mosquitoes. Our study characterizes a new tool for tracking bottlenecks during virus transmission in vivo and highlights the importance of both viral and host factors on the maintenance of viral diversity.


2020 ◽  
Author(s):  
Juli R. Wuliandari ◽  
Ary A. Hoffmann ◽  
Warsito Tantowijoyo ◽  
Nancy M. Endersby-Harshman

Abstract Background: In the inner city of Yogyakarta, Indonesia, insecticide resistance is expected in the main dengue vector, Aedes aegypti, because of the intensive local application of pyrethroid insecticides. However, detailed information about the nature of resistance in this species is required to assist the release of Wolbachia mosquitoes in a dengue control program so that we can ensure that insecticide resistance in the strain of Ae. aegypti being released matches that of the background population.Methods: High-resolution melt genotyping was used to screen for kdr mutations associated with pyrethroid resistance in the voltage-sensitive sodium channel (VSSC) gene in Ae. aegypti of some areas in the inner city of Yogyakarta.Results: The results show that the V1016G mutation predominated, with individuals homozygous for the 1016G allele at a frequency of 82.1% and the mutant allele G at a frequency of 92%. Two patterns of co-occurrence of mutations were detected in this study, homozygous individuals V1016G/S989P; and heterozygous individuals V1016G/F1534C/S989P. We found the simultaneous occurrence of kdr mutations V1016G and F1534C at all collection sites, but not within individual mosquitoes. Homozygous mutants at locus 1016 were homozygous wildtype at locus 1534 and vice versa, and heterozygous V1016G were also heterozygous for F1534C. The most common tri-locus genotype co-occurrences were homozygous mutant 1016GG and homozygous wild-type FF1534, combined with homozygous mutant 989PP (GG/FF/PP) at a frequency of 38.28%.Conclusions: Given the relatively small differences in frequency of resistance alleles across the city area, locality variations in resistance should have minor implications for the success of Wolbachia mosquito trials being undertaken in the Yogyakarta area.


2021 ◽  
Vol 49 (1) ◽  
Author(s):  
Takaki Shimono ◽  
Seiji Kanda ◽  
Pheophet Lamaningao ◽  
Yuki Murakami ◽  
Andrew Waleluma Darcy ◽  
...  

Abstract Background Aedes aegypti, which is widely distributed in the Lao People’s Democratic Republic (PDR), is the primary vector of arboviral diseases. Chemical insecticides have been intensively used to eliminate mosquito-borne diseases, resulting in the development of insecticide resistance. However, little is known about the insecticide resistance of mosquito populations in Lao PDR and the mechanisms responsible for it, which have important implications for vector management programs. Here, we examined the phenotypic and haplotypic profiles of insecticide resistance in populations of Ae. aegypti larvae from central Lao PDR. Methods Ae. aegypti larvae were collected from four sites in Lao PDR, and their susceptibility to temephos, deltamethrin, permethrin, and Bacillus thuringiensis israelensis (Bti) was tested using larval bioassays. Synergistic tests were also conducted to evaluate the activity of insecticide-metabolizing enzymes in the larvae. Deltamethrin-resistant and Deltamethrin-susceptible larvae were then genotyped for knockdown resistance (kdr) mutations to determine the associations between each genotype and resistance. Results Ae. aegypti larvae from central Lao PDR were considered to be “resistant” (<98% mortality) to organophosphates and pyrethroids. The bio-insecticide Bti remains effective against such larvae. The resistance mechanisms of Ae. aegypti larvae were found to vary among populations, especially for pyrethroid resistance. Kdr mutations were significantly associated with deltamethrin resistance in Ae. aegypti from the Xaythany population. In contrast, synergist assays with piperonyl butoxide suggested that cytochrome P450 monooxygenases played an important role in the resistance seen in the Khounkham and Thakhek populations. Conclusion This study obtained information that will aid the design and implementation of insecticide-based vector management of Ae. aegypti in central Lao PDR. Ae. aegypti larvae from central Lao PDR were highly susceptible to Bti, while they were resistant to temephos at a diagnostic dose of 0.0286 mg/L. Given the limited number of insecticides that are approved for vector control, it is important to alternate between temephos and other larvicides, such as Bti and pyriproxyfen. The differences in pyrethroid resistance mechanisms seen among the Ae. aegypti populations highlight the need to tailor vector-control strategies to each region to increase the success of dengue control in Lao PDR.


Sign in / Sign up

Export Citation Format

Share Document