scholarly journals Stable transfection system for Babesia sp. Xinjiang

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jinming Wang ◽  
Xiaoxing Wang ◽  
Guiquan Guan ◽  
Jifei Yang ◽  
Junlong Liu ◽  
...  

Abstract Background Stable transfection systems have been described in many protozoan parasites, including Plasmodium falciparum, Cryptosporidium parvum, Babesia bovis, Babesia ovata, and Babesia gibsoni. For Babesia sp. Xinjiang (Bxj), which is the causative pathogen of ovine babesiosis and mainly prevails across China, the platform of those techniques remains absent. Genetic manipulation techniques are powerful tools to enhance our knowledge on parasite biology, which may provide potential drug targets and diagnostic markers. Methods We evaluated the inhibition efficiency of blasticidin (BSD) and WR99210 to Bxj. Then, a plasmid was constructed bearing selectable marker BSD, green fluorescent protein (GFP) gene, and rhoptry-associated protein-1 3′ terminator region (rap 3′ TR). The plasmid was integrated into the elongation factor-1 alpha (ef-1α) site of Bxj genome by cross-over homologous recombination technique. Twenty μg of plasmid was transfected into Bxj merozoites. Subsequently, drug selection was performed 24 h after transfection to generate transfected parasites. Results Transfected parasite lines, Bxj-c1, Bxj-c2, and Bxj-c3, were successfully obtained after transfection, drug selection, and colonization. Exogenous genes were integrated into the Bxj genome, which were confirmed by PCR amplification and sequencing. In addition, results of western blot (WB) and indirect immunofluorescence assay (IFA) revealed that GFP-BSD had expressed for 11 months. Conclusions In our present study, stable transfection system for Bxj was successfully developed. We anticipate that this platform will greatly facilitate basic research of Bxj. Graphical abstract

2020 ◽  
Author(s):  
Xiaoxing Wang ◽  
Jinming Wang ◽  
Junlong Liu ◽  
Jifei Yang ◽  
LV Zhaoyong ◽  
...  

Abstract BackgroundBabesia species, the agentic pathogens of human and animal babesiosis, are spread worldwide. Over the last decade, genetic manipulation approaches have been applied with many protozoan parasites, including Plasmodium falciparum, Trypanosoma cruzi, Cryptosporidium parvum, Theileria annulata, Theileria parva, Babesia bovis, Babesia bigemina, Babesia ovata, Babesia gibsoni, and Babesia ovis. For Babesia sp. Xinjiang (Bxj), which is the causative pathogen of ovine babesiosis mainly in China, the efficiency of these techniques remain unclear. MethodsFirst, a plasmid bearing the elongation factor-1 alpha promoter, as well as the firefly luciferase reporter gene and rap stop region were transfected into Bxj by electroporation and nucleoporation to determine the most suitable transfection solution. Then, six program setting were evaluated to confirm the best for Bxj transient transfection and a series of different amounts of plasmid DNA were applied to generate relatively high luminescence values. Finally, the activities of four promoters derived from Bxj were evaluated using the developed transient transfection system. ConclusionsIn this study, a transient transfection system for Bxj was optimized. These findings provided critical information for Bxj genetic manipulation, as an essential tool to identify virulence factors and to further elucidate the basic biology of pathogens.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Dabbu Kumar Jaijyan ◽  
Kavitha Govindasamy ◽  
Jyoti Singh ◽  
Shreya Bhattacharya ◽  
Agam Prasad Singh

Abstract Babesia microti, an emerging human pathogen, is primarily transmitted through a bite of an infected tick and blood transfusions in human. Stable transfection technique has been reported in many protozoan parasites over the past few years. However, in vivo transient and stable transfection method has not been established for Babesia microti. Here, for the first time, we present a method of transient as well as stable transfection of the Babesia microti (B. microti) in the in vivo conditions. We have identified a novel promoter of B. microti. We also demonstrated that Plasmodium berghei DHFR promoter is recognized and functional in B. microti. We show that BM-CTQ41297 promoter control the expression of two genes, which are present on either side and thus represents a bi-functional promoter in B. microti. The predicted promoter activity values using Promoter 2.0 program is higher for BM- CTQ41297 promoter than strong promoters such as β-actin, ef-1β, and many other promoters. Furthermore, we discovered a non-essential locus for the genetic manipulation of the parasite, allowing us to stably integrate foreign genes; GFP, mCherry, into the B. microti. The transfection using an electroporation method and genetic manipulation of B. microti is now achievable and it is possible to obtain transfected viable parasites under in vivo growing conditions. The growth curve analysis of transfected and WT B. microti are similar indicating no defects in the transgenic parasites. This study will enable other researchers in understanding the B. microti biology, host modulation and diverse parasite developmental stages using reverse genetics and holds great potential to identify novel drug targets and vaccine development.


2018 ◽  
Vol 11 (1) ◽  
Author(s):  
Mingming Liu ◽  
Paul Franck Adjou Moumouni ◽  
Masahito Asada ◽  
Hassan Hakimi ◽  
Tatsunori Masatani ◽  
...  

Author(s):  
Ye Xie ◽  
Jia Yao ◽  
Weilin Jin ◽  
Longfei Ren ◽  
Xun Li

Limited by the poor proliferation and restricted sources of adult hepatocytes, there is an urgent need to find substitutes for proliferation and cultivation of mature hepatocytes in vitro for use in disease treatment, drug approval, and toxicity testing. Hepatocyte-like cells (HLCs), which originate from undifferentiated stem cells or modified adult cells, are considered good candidates because of their advantages in terms of cell source and in vitro expansion ability. However, the majority of induced HLCs are in an immature state, and their degree of differentiation is heterogeneous, diminishing their usability in basic research and limiting their clinical application. Therefore, various methods have been developed to promote the maturation of HLCs, including chemical approaches, alteration of cell culture systems, and genetic manipulation, to meet the needs of in vivo transplantation and in vitro model establishment. This review proposes different cell types for the induction of HLCs, and provide a comprehensive overview of various techniques to promote the generation and maturation of HLCs in vitro.


2018 ◽  
Vol 19 (12) ◽  
pp. 3767 ◽  
Author(s):  
Qian Wang ◽  
Jian Fang ◽  
Qihua Pan ◽  
Yizhou Wang ◽  
Ting Xue ◽  
...  

The recombinant baculovirus has been widely used as an efficient tool to mediate gene delivery into mammalian cells but has barely been used in fish cells. In the present study, we constructed a recombinant baculovirus containing the dual-promoter cytomegalovirus (CMV) and white spot syndrome virus (WSSV) immediate-early gene 1 (ie1) (WSSV ie1), followed by a puromycin–green fluorescent protein (Puro-GFP, pf) or puromycin–red fluorescent protein (Puro-RFP, pr) cassette, which simultaneously allowed for easy observation, rapid titer determination, drug selection, and exogenous gene expression. This recombinant baculovirus was successfully transduced into fish cells, including Mylopharyngodon piceus bladder (MPB), fin (MPF), and kidney (MPK); Oryzias latipes spermatogonia (SG3); and Danio rerio embryonic fibroblast (ZF4) cells. Stable transgenic cell lines were generated after drug selection, which was further verified by Western blot. A cell monoclonal formation assay proved the stable heredity of transgenic MPB cells. In addition, a recombinant baculovirus containing a pr cassette and four transcription factors for induced pluripotent stem cells (iPSC) was constructed and transduced into ZF4 cells, and these exogenous genes were simultaneously delivered and transcribed efficiently in drug-selected ZF4 cells, proving the practicability of this modified recombinant baculovirus system. We also proved that the WSSV ie1 promoter had robust activity in fish cells in vitro and in vivo. Taken together, this modified recombinant baculovirus can be a favorable transgenic tool to obtain transient or stable transgenic fish cells.


Blood ◽  
1999 ◽  
Vol 94 (2) ◽  
pp. 572-578 ◽  
Author(s):  
Mineo Iwata ◽  
Jeff Vieira ◽  
Michael Byrne ◽  
Heidi Horton ◽  
Beverly Torok-Storb

Abstract A Toledo strain cytomegalovirus (CMV) containing the gene for green fluorescent protein (GFP) under the control of elongation factor-1 promoter was used to study infection of human marrow stromal cells. Two stromal cell lines were used: HS-5, which secretes copious amounts of known cytokines and interleukins; and HS-27a, which does not secrete these activities. CMV growth and spread was monitored by counting green plaques and quantitating GFP intensity. Initial studies indicated that, whereas HS-5 and 27a have similar susceptibilities to infection, as evidenced by the same number of GFP+ cells at day 2, HS-5 appears more resistant to growth and spread of CMV. Furthermore, conditioned media from HS-5 (HS-5 CM) inhibited CMV plaque formation in HS-27a, suggesting that factors secreted by HS-5 are responsible for limiting CMV growth. Neutralizing antibodies against interleukin-1 (IL-1) and IL-1β completely blocked the ability of HS-5 CM to limit viral growth, suggesting that IL-1, which is known to be present in HS-5 CM, is responsible for this effect. When exogenous IL-1β was added to CMV-infected HS-27a, both the number of plaques and the intensity of GFP was significantly reduced in IL-1–treated HS-27a compared with untreated HS-27a (the number of plaques by day 18 was 20 ± 3 v 151 ± 12/well, respectively; GFP intensity was 535 ± 165 v 6,516 ± 652/well, respectively, in 4 separate experiments). At day 21, when IL-1β–treated, CMV-infected cultures were passaged and then cultured in the absence of IL-1β, CMV growth progressed with the kinetics of the original untreated culture, indicating that the IL-1β effect is reversible. Because HS-27a expresses the type I IL-1 receptor, we speculate that the antiviral effects are mediated through IL-1–induced changes in cellular gene expression. DNA chip analysis of mRNA from IL-1β–treated and nontreated HS-27a cells has identified some candidate molecules.


2017 ◽  
Vol 29 (1) ◽  
pp. 212
Author(s):  
C. A. Pinzon ◽  
M. Snyder ◽  
J. Pryor ◽  
B. Thompson ◽  
M. Golding ◽  
...  

The myostatin gene or growth differentiation factor 8 is a member of the transforming growth factor-β superfamily that acts as a negative regulator of muscle growth. Mutations inactivating this gene occur naturally in Piedmontese and Belgian Blue cattle breeds, resulting in a dramatic increase in muscle mass, albeit with unwanted consequences of increased dystocia and decreased fertility. Modulation of muscle mass increase without the unwanted effects would be of great value for improving livestock growth and economic value of livestock. The objective of our work was to use the CRISPR-Cas9 genetic engineering tool to generate deletions of different elements in the myostatin promoter in order to decrease the level of expression and obtain an attenuated phenotype without the detrimental consequences of an inactivating mutation. To achieve this objective 4 different small guide RNA (sgRNA) targeting the promoter near the mutation were designed with PAM positions from transcription starting site of −1577, −689, −555, and −116. These sgRNA were cloned individually into the Cas9 plasmids (px461, and px462; Addgene®). These plasmids allow for a dual puromycin resistance (px462) and green fluorescent protein (px461) selection. We first tested the functionality of these sgRNA in vitro by co-transfecting bovine fetal fibroblasts with a combination of both plasmids (Set 1 = sgRNA 1–4; Set 2 = sgRNA 2–3). Cells were exposed to puromycin (0.2 µg mL−1) for 72 h, then single and mixed colonies positive for green fluorescent protein expression were separated for propagation. The DNA was extracted for PCR amplification of the targeted region. Multiple deletions and a few insertion events were observed after PCR, bands were cloned into TOPO® vector (Thermo Fisher Scientific, Waltham, MA, USA) and sequenced. Sequencing results confirmed the PCR products as insertions or deletions in the myostatin promoter region. We proceeded to modify the myostatin promoter directly in bovine zygotes. For this, IVF-derived zygotes were randomly assigned to 3 different treatment groups Set 1, Set 2, or Null (no sgRNA) for microinjections. Each zygote was injected with ~100 pL of trophectoderm buffer containing 50 ng µL−1 of total sgRNA, 10 ng µL−1 of Cas9 mRNA, and 30 ng µL−1 of Cas9 protein with 1 mg mL−1 of fluorescent dextran. Day 7 post-IVF blastocysts were lysed and DNA was extracted for PCR amplification of the target region. In Set 1, 16 of 19 embryos (94.12%) were successfully edited, whereas in Set 2 there were 11 of 17 embryos (64.7%) edited. In both sets of sgRNA there was a high degree of mosaicism, with only 1 embryo demonstrating a homozygous deletion. In conclusion, CRISPR/Cas9 acts over the course of the first few cleavage divisions Further research is necessary to refine the CRISPR/Cas9 system for inducing genetic mutations in bovine embryos.


2002 ◽  
Vol 12 (5) ◽  
pp. 409-423
Author(s):  
W. Wu ◽  
W. Hu ◽  
J. J. Kavanagh

With the human genome sequence now determined, the field of molecular medicine is moving beyond genomics to proteomics. In the field of cancer research, the key question is: how can oncologists best use techniques of proteomics in basic research and clinical application? In the postgenomic era, proteomics promises the discovery of biomarkers and tumor markers for early detection and diagnosis, novel protein-based drug targets for anticancer therapy, and new endpoints for the assessment of therapeutic efficacy and toxicity. This review paper will explore key themes in proteomics and their application in clinical cancer research.


2019 ◽  
Vol 87 (7) ◽  
Author(s):  
Jennifer D. Helble ◽  
Michael N. Starnbach

ABSTRACTAntigen-specific CD4+T cells againstChlamydiaare crucial for driving bacterial clearance and mediating protection against reinfection. Although theChlamydia trachomatisprotein Cta1 has been identified to be a dominant murine CD4+T cell antigen, its level of expression during the bacterial developmental cycle and precise localization within the host cell are unknown. Newly developed tools forChlamydiagenetic manipulation have allowed us to generate aC. trachomatisstrain expressing a heterologous CD4+T cell epitope from ovalbumin (OVA) consisting of OVA residues 323 to 339 (OVA323–339). By tagging proteins expressed inC. trachomatiswith OVA323–339, we can begin to understand how protein expression, developmental regulation, and subcellular compartmentalization affect the potential of those proteins to serve as antigens. When OVA323–339was expressed as a fusion with green fluorescent protein, we found that we were able to elicit an OT-II T cell response in an antigen-dependent manner, but surprisingly, these T cells were unable to reduce bacterial burden in mice. These data suggest that the subcellular localization of antigen, the level of antigen expression, or the timing of expression within the developmental cycle ofChlamydiamay play a crucial role in eliciting a protective CD4+T cell response.


Sign in / Sign up

Export Citation Format

Share Document