scholarly journals Characterisation of mobile genetic elements in Mycoplasma hominis with the description of ICEHo-II, a variant mycoplasma integrative and conjugative element

Mobile DNA ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Birgit Henrich ◽  
Stephanie Hammerlage ◽  
Sebastian Scharf ◽  
Diana Haberhausen ◽  
Ursula Fürnkranz ◽  
...  

Abstract Background Mobile genetic elements are found in genomes throughout the microbial world, mediating genome plasticity and important prokaryotic phenotypes. Even the cell wall-less mycoplasmas, which are known to harbour a minimal set of genes, seem to accumulate mobile genetic elements. In Mycoplasma hominis, a facultative pathogen of the human urogenital tract and an inherently very heterogeneous species, four different MGE-classes had been detected until now: insertion sequence ISMhom-1, prophage MHoV-1, a tetracycline resistance mediating transposon, and ICEHo, a species-specific variant of a mycoplasma integrative and conjugative element encoding a T4SS secretion system (termed MICE). Results To characterize the prevalence of these MGEs, genomes of 23 M. hominis isolates were assembled using whole genome sequencing and bioinformatically analysed for the presence of mobile genetic elements. In addition to the previously described MGEs, a new ICEHo variant was found, which we designate ICEHo-II. Of 15 ICEHo-II genes, five are common MICE genes; eight are unique to ICEHo-II; and two represent a duplication of a gene also present in ICEHo-I. In 150 M. hominis isolates and based on a screening PCR, prevalence of ICEHo-I was 40.7%; of ICEHo-II, 28.7%; and of both elements, 15.3%. Activity of ICEHo-I and -II was demonstrated by detection of circularized extrachromosomal forms of the elements through PCR and subsequent Sanger sequencing. Conclusions Nanopore sequencing enabled the identification of mobile genetic elements and of ICEHo-II, a novel MICE element of M. hominis, whose phenotypic impact and potential impact on pathogenicity can now be elucidated.

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Joshua M Jones ◽  
Ilana Grinberg ◽  
Avigdor Eldar ◽  
Alan D Grossman

Horizontal gene transfer is a major force in bacterial evolution. Mobile genetic elements are responsible for much of horizontal gene transfer and also carry beneficial cargo genes. Uncovering strategies used by mobile genetic elements to benefit host cells is crucial for understanding their stability and spread in populations. We describe a benefit that ICEBs1, an integrative and conjugative element of Bacillus subtilis, provides to its host cells. Activation of ICEBs1 conferred a frequency-dependent selective advantage to host cells during two different developmental processes: biofilm formation and sporulation. These benefits were due to inhibition of biofilm-associated gene expression and delayed sporulation by ICEBs1-containing cells, enabling them to exploit their neighbors and grow more prior to development. A single ICEBs1 gene, devI (formerly ydcO), was both necessary and sufficient for inhibition of development. Manipulation of host developmental programs allows ICEBs1 to increase host fitness, thereby increasing propagation of the element.


2022 ◽  
Author(s):  
João Botelho ◽  
Adrian Cazares ◽  
Hinrich Schulenburg

Mobile genetic elements (MGEs) mediate the shuffling of genes among organisms. They contribute to the spread of virulence and antibiotic resistance genes in human pathogens, including the particularly problematic group of ESKAPE pathogens, such as Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter sp. Here, we performed the first systematic analysis of MGEs, including plasmids, prophages, and integrative and conjugative/mobilizable elements (ICEs/IMEs), in the ESKAPE pathogens. We characterized over 1700 complete ESKAPE genomes and found that different MGE types are asymmetrically distributed across these pathogens. While some MGEs are capable of exchanging DNA beyond the genus (and phylum) barrier, horizontal gene transfer (HGT) is mainly restricted by phylum or genus. We further observed that most genes on MGEs have unknown functions and show intricate distribution patterns. Moreover, AMR genes and anti-CRISPRs are overrepresented in the ESKAPE mobilome. Our results also underscored species-specific trends shaping the number of MGEs, AMR, and virulence genes across pairs of conspecific ESKAPE genomes with and without CRISPR-Cas systems. Finally, we found that CRISPR targets vary according to MGE type: while plasmid CRISPRs almost exclusively target other plasmids, ICEs/IME CRISPRs preferentially target ICEs/IMEs and prophages. Overall, our study highlights the general importance of the ESKAPE mobilome in contributing to the spread of AMR and mediating conflict among MGEs.


2021 ◽  
Author(s):  
Anna Cusco ◽  
Daniel Perez ◽  
Joaquim Vines ◽  
Norma Fabregas ◽  
Olga Francino

Long-read metagenomics facilitates the assembly of high-quality metagenome-assembled genomes (HQ MAGs) out of complex microbiomes. It provides highly contiguous assemblies by spanning repetitive regions, complete ribosomal genes, and mobile genetic elements. Hi-C proximity ligation data bins the long contigs and their associated extra-chromosomal elements to their bacterial host. Here, we characterized a canine fecal sample combining a long-read metagenomics assembly with Hi-C data, and further correcting frameshift errors. We retrieved 27 HQ MAGs and seven medium-quality (MQ) MAGs considering MIMAG criteria. All the long-read canine MAGs improved previous short-read MAGs from public datasets regarding contiguity of the assembly, presence, and completeness of the ribosomal operons, and presence of canonical tRNAs. This trend was also observed when comparing to representative genomes from a pure culture (short-read assemblies). Moreover, Hi-C data linked six potential plasmids to their bacterial hosts. Finally, we identified 51 bacteriophages integrated into their bacterial host, providing novel host information for eight viral clusters that included Gut Phage Database viral genomes. Even though three viral clusters were species-specific, most of them presented a broader host range. In conclusion, long-read metagenomics retrieved long contigs harboring complete assembled ribosomal operons, prophages, and other mobile genetic elements. Hi-C binned together the long contigs into HQ and MQ MAGs, some of them representing closely related species. Long-read metagenomics and Hi-C proximity ligation are likely to become a comprehensive approach to HQ MAGs discovery and assignment of extra-chromosomal elements to their bacterial host.


2010 ◽  
Vol 192 (19) ◽  
pp. 5026-5036 ◽  
Author(s):  
David Roche ◽  
Maud Fléchard ◽  
Nathalie Lallier ◽  
Maryline Répérant ◽  
Annie Brée ◽  
...  

ABSTRACT The diversity of the Escherichia coli species is in part due to the large number of mobile genetic elements that are exchanged between strains. We report here the identification of a new integrative and conjugative element (ICE) of the pKLC102/PAGI-2 family located downstream of the tRNA gene pheU in the E. coli strain BEN374. Indeed, this new region, which we called ICEEc2, can be transferred by conjugation from strain BEN374 to the E. coli strain C600. We were also able to transfer this region into a Salmonella enterica serovar Typhimurium strain and into a Yersinia pseudotuberculosis strain. This transfer was then followed by the integration of ICEEc2 into the host chromosome downstream of a phe tRNA gene. Our data indicated that this transfer involved a set of three genes encoding DNA mobility enzymes and a type IV pilus encoded by genes present on ICEEc2. Given the wide distribution of members of this family, these mobile genetic elements are likely to play an important role in the diversification of bacteria.


2020 ◽  
Vol 66 (6) ◽  
pp. 1069-1071
Author(s):  
Bram van Dijk

Abstract Bacteria and other prokaryotes evolve primarily through rapid changes in their gene content by quickly losing and gaining genes whenever an ecological opportunity emerges. As gene loss and horizontal gene transfer (HGT) appear to be the most common events across the prokaryotic tree of life, we need to think beyond gradual sequence evolution if we wish to understand the microbial world. Especially genes that reside on mobile genetic elements (MGEs) may spread much more rapidly through a microbial population than genes that reside on the bacterial chromosome. This raises the question: why are some genes associated with MGEs, while others are not? Here, I briefly review a recently proposed class of genes for which we have coined the term “rescuable genes”. The fitness effect of carrying these genes is so small, either constantly or on average, that they are prone to be lost from a microbial population. I argue that HGT, even when costly to the individual cells, may play an important role in maintaining these rescuable genes in microbial communities.


2002 ◽  
Vol 184 (16) ◽  
pp. 4489-4499 ◽  
Author(s):  
Christophe Carnoy ◽  
Stephanie Floquet ◽  
Michael Marceau ◽  
Florent Sebbane ◽  
Stephanie Haentjens-Herwegh ◽  
...  

ABSTRACT Yersinia pseudotuberculosis produces YPM (Y. pseudotuberculosis-derived mitogen), a superantigenic toxin that exacerbates the virulence of the bacterium in vivo. To date, three alleles of the superantigen gene (ypmA, ypmB, and ypmC) have been described. These genes are not found in all Y. pseudotuberculosis strains and have a low GC content, suggesting their location on mobile genetic elements. To elucidate this question, the genetic environment of the superantigen-encoding genes was characterized and 11 open reading frames (ORFs) were defined. Sequence analysis revealed that the ypm genes were not associated with plasmids, phages, transposons, or pathogenicity islands and that the superantigen genes were always located in the chromosome between ORF3 and ORF4. Nonsuperantigenic strains exhibited the same genetic organization of the locus but lacked the ypm gene between ORF3 and ORF4. A new insertion sequence, designated IS1398, which displays features of the Tn3 family, was characterized downstream of the ypmA and ypmC genes. A 13.3-kb region containing the ypm genes was not found in the genome of Y. pestis (CO92 and KIM 5 strains). We experimentally induced deletion of the ypm gene from a superantigen-expressing Y. pseudotuberculosis: using the association of aph(3′)-IIIa and sacB genes, we demonstrated that when these reporter genes were present in the ypm locus, deletion of these genes was about 250 times more frequent than when they were located in another region of the Y. pseudotuberculosis chromosome. These results indicate that unlike other superantigenic toxin genes, the Yersinia ypm genes are not associated with mobile genetic elements but are inserted in an unstable locus of the genome.


2021 ◽  
Vol 28 ◽  
pp. 128-134
Author(s):  
O. V. Pidpala ◽  
L. L. Lukash

Aim.To analyze the distribution of species-specific mobile genetic elements (MGE) in orthologs of the MGMT gene in Platyrrhina. Methods. The homology between nucleotide sequences was determined by BLAST 2.6.1. The results of the search and identification of MGE were performed  using  the  CENSOR program. Results. On the example of orthologs of the MGMT gene in New World monkeys, it has been shown that different species-specific MGE identified in their intron sequences may have different evolutionary chronologies. In the case of the element Alu2_TS, which originated in the Tarsiiformes representative, it was found that in evolutionarily close primates it undergoes deletion degradation, while fragments of the human-specific L1Hs element are found in the genomes of evolutionarily distant primates long before the formation and emergence of this retroelement. Conclusions. The chronology of  evolutionary changes in the gene MGMT and its species-specific MGE can be of different nature and occur in parallele and independently. Keywords: Platyrrhina, MGMT gene, MGE, Alu2_TS, L1Hs.


2019 ◽  
Vol 63 (11) ◽  
Author(s):  
Karina Yui Eto ◽  
Neville Firth ◽  
Amy M. Davis ◽  
Stephen M. Kwong ◽  
Marcelina Krysiak ◽  
...  

ABSTRACT Horizontal transfer of plasmids encoding antimicrobial resistance and virulence determinants has been instrumental in Staphylococcus aureus evolution, including the emergence of community-associated methicillin-resistant S. aureus (CA-MRSA). In the early 1990s, the first CA-MRSA strain isolated in Western Australia (WA), WA-5, encoded cadmium, tetracycline, and penicillin resistance genes on plasmid pWBG753 (∼30 kb). WA-5 and pWBG753 appeared only briefly in WA; however, fusidic acid resistance plasmids related to pWBG753 were also present in the first European CA-MRSA isolates at the time. Here, we characterize a 72-kb conjugative plasmid, pWBG731, present in multiresistant WA-5-like clones from the same period. pWBG731 was a cointegrant formed from pWBG753 and a pWBG749 family conjugative plasmid. pWBG731 carried mupirocin, trimethoprim, cadmium, and penicillin resistance genes. The stepwise evolution of pWBG731 likely occurred through the combined actions of IS257, IS257-dependent miniature inverted-repeat transposable elements (MITEs), and the BinL resolution system of the β-lactamase transposon Tn552. An evolutionarily intermediate ∼42-kb nonconjugative plasmid, pWBG715, possessed the same resistance genes as pWBG731 but retained an integrated copy of the small tetracycline resistance plasmid pT181. IS257 likely facilitated the replacement of pT181 with conjugation genes on pWBG731, thus enabling autonomous transfer. Like conjugative plasmid pWBG749, pWBG731 also mobilized nonconjugative plasmids carrying oriT mimics. It seems likely that pWBG731 represents the product of multiple recombination events between the WA-5 pWBG753 plasmid and other mobile genetic elements present in indigenous community-associated methicillin-sensitive S. aureus (CA-MSSA) isolates. The molecular evolution of pWBG731 saliently illustrates how diverse mobile genetic elements can together facilitate rapid accrual and horizontal dissemination of multiresistance in S. aureus CA-MRSA.


Sign in / Sign up

Export Citation Format

Share Document