scholarly journals Exosomal SNHG16 secreted by CSCs promotes glioma development via TLR7

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ruijie Zhang ◽  
Peng Li ◽  
Heli Lv ◽  
Nana Li ◽  
Suliang Ren ◽  
...  

Abstract Background Glioma is one of the most common central nervous system malignant tumors, accounting for 45~60% of adult intracranial tumors. However, the clinical treatment of glioma is limited. It is of great significance to seek new therapeutic methods for glioma via gene therapy. Methods Long non-coding RNA (lncRNA) SNHG16 expression level was measured by microarray and qRT-PCR assay; ISH was used to identify the location of SNHG16. Cancer stem cells (CSCs) were separated from glioma tissues and identified using immunofluorescence. Exosomes were isolated from CSCs and cancer cells and identified by TEM and western blot. MTT, wound healing, transwell, and colony formation assay were performed to explore the role of SNHG16 or si-SNHG16 from CSCs on progression of glioma cells. RIP was used to verify the interaction between SNHG16 and TLR7. The experiment of Xenograft used for exploring the function of SNHG16/ TLR7/MyD88/NFκB/c-Myc on growth on glioma in vivo. Results Microarray assay showed long non-coding RNA (lncRNA) SNHG16 was upregulated in glioma. Followed qRT-PCR also showed an increase of SNHG16 in glioma tissues; high expression of SNHG16 indicated a poor prognosis in glioma patients. Interestingly, SNHG16 was packaged into exosomes and derived from CSCs. Functional analysis showed exo-SNHG16 secreted by CSCs promoted the progression of glioma cell lines SHG44 and U251. Furthermore, SNHG16 interacted with TLR7 and activated NFκB/c-Myc signaling in glioma cells. And the silencing of TLR7 inhibited the progression of SHG44 and U251 cells by exo-SNHG16 from CSCs. In vivo tumorigenesis experiments showed that exo-SNHG16 induced glioma progression by activating TLR7/MyD88/NFκB/c-Myc signaling. Conclusion Our study suggested CSC-derived exo-SNHG16 promoted cancer progression by activating TLR7/MyD88/NFκB/c-Myc signaling pathway.

2021 ◽  
Vol 16 (1) ◽  
pp. 1-13
Author(s):  
Weiwei Liu ◽  
Dongmei Yao ◽  
Bo Huang

Abstract Cervical cancer (CC) is a huge threat to the health of women worldwide. Long non-coding RNA plasmacytoma variant translocation 1 gene (PVT1) was proved to be associated with the development of diverse human cancers, including CC. Nevertheless, the exact mechanism of PVT1 in CC progression remains unclear. Levels of PVT1, microRNA-503 (miR-503), and ADP ribosylation factor-like protein 2 (ARL2) were measured by quantitative reverse transcription-polymerase chain reaction or western blot assay. 3-(4,5)-Dimethylthiazole-2-y1)-2,5-biphenyl tetrazolium bromide (MTT) and flow cytometry were used to examine cell viability and apoptosis, respectively. For migration and invasion detection, transwell assay was performed. The interaction between miR-503 and PVT1 or ARL2 was shown by dual luciferase reporter assay. A nude mouse model was constructed to clarify the role of PVT1 in vivo. PVT1 and ARL2 expressions were increased, whereas miR-503 expression was decreased in CC tissues and cells. PVT1 was a sponge of miR-503, and miR-503 targeted ARL2. PVT1 knockdown suppressed proliferation, migration, and invasion of CC cells, which could be largely reverted by miR-503 inhibitor. In addition, upregulated ARL2 could attenuate si-PVT1-mediated anti-proliferation and anti-metastasis effects on CC cells. Silenced PVT1 also inhibited CC tumor growth in vivo. PVT1 knockdown exerted tumor suppressor role in CC progression via the miR-503/ARL2 axis, at least in part.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Aixia Hu ◽  
Fan Hong ◽  
Daohong Li ◽  
Yuwei Jin ◽  
Lingfei Kon ◽  
...  

Abstract Background As a significant cause of cancer deaths worldwide, breast cancer continues to be a troublesome malignancy. Long non-coding RNAs (lncRNAs) have been implicated in the development of breast cancer. Abnormal methylation has been associated with unfavorable breast cancer prognosis. Herein, the current study aimed to elucidate the role of lncRNA ROR in breast cancer. Methods RT-qPCR was performed to determine whether lncRNA ROR was highly expressed in breast cancer tissues, while lncRNA ROR expression was detected in both the nuclear and cytoplasm of breast cancer cells. MCF-7 cells were subsequently introduced with oe-lncRNA ROR, sh-lncRNA ROR to explore the effects of lncRNA ROR on cell proliferation, invasion and apoptosis. Results RIP, RNA pull-down and ChIP assays provided evidence suggesting that lncRNA ROR recruited transmethylase MLL1 to promote H3K4 trimethylation that enhanced TIMP3 transcription. The rescue experiments demonstrated that lncRNA ROR knockdown could inhibit the progression of breast cancer via the downregulation of TIMP3. Finally, the in vivo experiment findings consistently highlighted the suppressive effects of lncRNA ROR silencing on tumor growth. Conclusion Taken together, our study demonstrates that silencing of lncRNA ROR inhibits breast cancer progression via repression of transmethylase MLL1 and TIMP3, emphasizing the potential of lncRNA ROR as a novel target against breast cancer.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lei Shi ◽  
Peter Magee ◽  
Matteo Fassan ◽  
Sudhakar Sahoo ◽  
Hui Sun Leong ◽  
...  

AbstractWild-type KRAS (KRASWT) amplification has been shown to be a secondary means of KRAS activation in cancer and associated with poor survival. Nevertheless, the precise role of KRASWT overexpression in lung cancer progression is largely unexplored. Here, we identify and characterize a KRAS-responsive lncRNA, KIMAT1 (ENSG00000228709) and show that it correlates with KRAS levels both in cell lines and in lung cancer specimens. Mechanistically, KIMAT1 is a MYC target and drives lung tumorigenesis by promoting the processing of oncogenic microRNAs (miRNAs) through DHX9 and NPM1 stabilization while halting the biogenesis of miRNAs with tumor suppressor function via MYC-dependent silencing of p21, a component of the Microprocessor Complex. KIMAT1 knockdown suppresses not only KRAS expression but also KRAS downstream signaling, thereby arresting lung cancer growth in vitro and in vivo. Taken together, this study uncovers a role for KIMAT1 in maintaining a positive feedback loop that sustains KRAS signaling during lung cancer progression and provides a proof of principle that interfering with KIMAT1 could be a strategy to hamper KRAS-induced tumorigenesis.


IUBMB Life ◽  
2018 ◽  
Vol 71 (1) ◽  
pp. 93-104 ◽  
Author(s):  
Qi Wang ◽  
Zhong-Wei Zhuang ◽  
Yi-Ming Cheng ◽  
Ji-Qiang Ma ◽  
Shi-Yi Xu ◽  
...  

2020 ◽  
Author(s):  
Ni Wang ◽  
Yang Yu ◽  
Boming Xu ◽  
Chunmei Zhang ◽  
Jie Liu ◽  
...  

Abstract Background: Recently, long non-coding RNAs (lncRNAs) have been verified to have significant regulatory roles in multiple human cancer processes. Long non-coding RNA LINC00152, located on chromosome 2p11.2, was identified as an oncogenic lncRNA in various cancers. However, the biological function and molecular mechanism of LINC00152 in cholangiocarcinoma (CCA) are still unknown.Methods: Bioinformatic analysis was performed to determine LINC00152 expression levels in the CCA and normal tissues by using raw microarray data downloaded from Gene Expression Omnibus (GSE76297) and The Cancer Genome Atlas (TCGA). Quantitative reverse transcription PCR (qRT-PCR) was used to validate LINC00152 expression in the CCA tissues compared with that in the paired normal tissues. CCK8, colony formation, Edu assays, transwell assays, flow cytometry, and in vivo tumor formation assays were performed to investigate the biological function of LINC00152 on CCA cell phenotypes. RNA-seq was carried out to identify the downstream target gene which was further examined by qRT-PCR, western bolt and rescue experiments. RNA immunoprecipitation (RIP) and Chromatin immunoprecipitation (ChIP) assays were performed to reveal the factors involved in the mechanism of LINC00152 functions in CCA.Results: LINC00152 is significantly upregulated in cholangiocarcinoma. LINC00152 regulated the proliferation and migration of cholangiocarcinoma cells both in vitro and in vivo. RNA-seq revealed that LINC00152 knockdown preferentially affected genes linked with cell proliferation, cell differentiation and cell adhesion. Furthermore, mechanistic investigation validated that LINC00152 could bind EZH2 and modulate the histone methylation of promoter of leucine rich repeats and immunoglobulin like domains 1 (LRIG1), thereby affecting cholangiocarcinoma cells growth and migration.Conclusion: Taken together, these results demonstrated the significant roles of LINC00152 in cholangiocarcinoma and suggested a new diagnostic and therapeutic direction of cholangiocarcinoma.


2018 ◽  
Vol 214 (10) ◽  
pp. 1524-1531 ◽  
Author(s):  
Daolin Ji ◽  
Xiangyu Zhong ◽  
Xingming Jiang ◽  
Kaiming Leng ◽  
Yi Xu ◽  
...  

2021 ◽  
Vol 27 ◽  
Author(s):  
Jinlan Chen ◽  
Enqing Meng ◽  
Yexiang Lin ◽  
Yujie Shen ◽  
Chengyu Hu ◽  
...  

Background: As we all know, long non-coding RNA (lncRNA) affects tumor progression, which has caused a great upsurge in recent years. It can also affect the growth, migration, and invasion of tumors. When we refer to the abnormal expression of lncRNA, we will find it associated with malignant tumors. In addition, lncRNA has been proved to be a key targeted gene for the treatment of some diseases. PART1, a member of lncRNA, has been reported as a regulator in the process of tumor occurrence and development. This study aims to reveal the biological functions, specific mechanisms, and clinical significance of PART1 in various tumor cells. Methods: Through the careful search of PUBMED, the mechanisms of the effect of PART1 on tumorigenesis and development are summarized. Results: On the one hand, the up-regulated expression of PART1 plays a tumor-promoting role in tumors, including lung cancer, prostate cancer, bladder cancer and so on. On the other hand, PART1 is down-regulated in gastric cancer, glioma and other tumors to play a tumor inhibitory role. In addition, PART1 regulates tumor growth mainly by targeting microRNA such as miR-635, directly regulating the expression of proteins such as FUS/EZH2, affecting signal pathways such as the Toll-like receptor pathway, or regulating immune cells. Conclusion: PART1 is closely related to tumors by regulating a variety of molecular mechanisms. In addition, PART1 can be used as a clinical marker for the early diagnosis of tumors and plays an important role in tumor-targeted therapy.


2019 ◽  
Vol 40 (8) ◽  
pp. 956-964 ◽  
Author(s):  
Chao Yang ◽  
Lin Wang ◽  
Jia Sun ◽  
Jun-hu Zhou ◽  
Yan-li Tan ◽  
...  

Abstract Long non-coding RNAs (lncRNAs) have been reported to play important roles in glioma; however, most of them promote glioma progression. We constructed a competing endogenous (ceRNA) network based on the Chinese Glioma Genome Atlas dataset, and lncRNA hect domain and RLD 2 pseudogene 2 (HERC2P2) is the core of this network. Highly connected genes in the ceRNA network classified the glioma patients into three clusters with significantly different survival rates. The expression of HERC2P2 is positively correlated with survival and negatively correlated with clinical grade. Cell colony formation, Transwell and cell scratch tests were performed to evaluate the role of HERC2P2 in glioblastoma growth. Furthermore, we overexpressed HERC2P2 in U87 cells and established a mouse intracranial glioma model to examine the function of HERC2P2 in vivo. In conclusion, we identified a lncRNA with tumor suppressor functions in glioma that could be a potential biomarker for glioma patients.


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3086
Author(s):  
Cong Zhou ◽  
Shiwei Duan

Studies have shown that non-coding RNAs (ncRNAs), especially long non-coding RNAs (lncRNAs), play an important regulatory role in the occurrence and development of human cancer. Nicotinamide nucleotide transhydrogenase-antisense 1 (NNT-AS1) is a newly-discovered cytoplasmic lncRNA. Many studies have shown that it has abnormally-high expression levels in malignant tumors, but there are also a few studies that have reported low expression levels of NNT-AS1 in gastric cancer, breast cancer, and ovarian cancer. At present, the regulatory mechanism of NNT-AS1 as a miRNA sponge, which may be an important reason affecting tumor cell proliferation, invasion, metastasis, and apoptosis is being studied in-depth. In addition, NNT-AS1 has been found to be related to cisplatin resistance. In this review, we summarize the abnormal expression of NNT-AS1 in a variety of neoplastic diseases and its diagnostic and prognostic value, and we explain the mechanism by which NNT-AS1 regulates cancer progression by competing with miRNAs. In addition, we also reveal the correlation between NNT-AS1 and cisplatin resistance and the potential clinical applications of NNT-AS1.


2017 ◽  
Vol 37 (6) ◽  
Author(s):  
Anqiang Yang ◽  
Handong Wang ◽  
Xiaobing Yang

Human glioma is one of the malignant tumors of the central nervous system (CNS). Its prognosis is poor, which is due to its genetic heterogeneity and our poor understanding of its underlying molecular mechanisms. The present study aimed to assess the relationship between plasmacytoma variant translocation 1 (PVT1) and enhancer of zeste homolog 2 (EZH2), and their effects on the proliferation and invasion of glioma cells. The expression levels of PVT1 and EZH2 in human glioma tissues and cell lines were measured using quantitative RT-PCR (qRT-PCR). Then, after siRNA-PVT1 and entire PVT1 sequence vector transfection, we determined the regulation roles of PVT1 in the proliferation, apoptosis, migration, and invasion of glioma cells. We found that the expression levels of both PVT1 and EZH2 were up-regulated in human glioma tissues and cell lines, and positively correlated with glioma malignancy. And, silencing of PVT1 expression resulted in decreased proliferation, increased apoptosis, and decreased migration and invasion. In addition, exogenous PVT1 led to increased EZH2 expression and increased proliferation and induced proliferation and invasion. These data inferred that long non-coding RNA PVT1 could be served as an indicator of glioma prognosis, and PVT1–EZH2 regulatory pathway may be a novel therapeutic target for treating glioma.


Sign in / Sign up

Export Citation Format

Share Document