scholarly journals Identification of genetic determinants of hemolytic activity of Riemerella anatipestifer using random transposon mutagenesis

2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Bingqing Sun ◽  
Yafei Xue ◽  
Xiaoli Du ◽  
Xiaohua He ◽  
Zuocheng Zou ◽  
...  

AbstractRiemerella anatipestifer causes epizootic infectious disease in poultry resulting in serious economic losses especially to the duck industry. In our previous study, R. anatipestifer was found to lyse duck erythrocytes in vitro. In the present study, a random Tn4351 mutagenesis library of hemolytic R. anatipestifer strain SX containing 4000 mutants was constructed to investigate the genetic basis of hemolytic activity. Thirty mutants with reduced hemolytic activity and one with increased hemolytic activity were screened and insertions in 24 genes were identified. Of these genes, four were predicted to encode outer membrane proteins, one encoded a cytoplasmic membrane protein, 11 encoded cytoplasmic proteins, and eight encoded proteins with unknown locations. Based on current annotations of the R. anatipestifer genomes, of the 24 genes, 7 (29.17%) were involved in iron utilization. The hemolytic activities of the complemented strains M2 (pRES-Riean_0790) and M18 (pRES-Riean_0653) were restored, indicating that both Riean_0653 and Riean_0790 are involved in the hemolytic activity of strain SX. However, the recombinant proteins rRiean_0317, rRiean_0790, rRiean_0653, rRiean_1027, rRiean_1143, and rRiean_1561 had no hemolytic activity, suggesting that none were hemolysins.

Microbiology ◽  
2020 ◽  
Vol 166 (5) ◽  
pp. 436-439 ◽  
Author(s):  
Yanshan Gong ◽  
Yongsheng Yang ◽  
Yan Chen ◽  
Bingqing Sun ◽  
Yafei Xue ◽  
...  

Riemerella anatipestifer infection causes serious economic losses in the duck industry worldwide. Acute septicemia and high blood bacterial loading in R. anatipestifer infected ducks indicate that R. anatipestifer may be able to obtain iron and other nutrients by lysing duck erythrocytes to support its rapid growth and proliferation in the blood. However, so far, little is known about the hemolytic activity of R. anatipestifer to duck erythrocytes. In this study, 29 of 52 R . anatipestifer strains showed hemolytic activity on duck blood agar, whereas all the tested dba+ (with hemolytic activity on duck blood agar) and dba− strains created pores in the duck red blood cells, with 4.35–9.03% hemolytic activity in a liquid hemolysis assay after incubation for 24 h. The concentrated culture supernatants of all the tested R. anatipestifer strains and the extracted outer membrane proteins (OMPs) from dba+ R. anatipestifer strains showed hemolytic activity on duck blood agar. These results, together with the median lethal dose (LD50) of some dba+ and dba- R. anatipestifer strains in ducklings, suggested that there was no direct relationship between the hemolytic capacity of R. anatipestifer on duck blood agar and its virulence.


2001 ◽  
Vol 183 (20) ◽  
pp. 5885-5895 ◽  
Author(s):  
S. Peter Howard ◽  
Christina Herrmann ◽  
Chad W. Stratilo ◽  
V. Braun

ABSTRACT The siderophore transport activities of the two outer membrane proteins FhuA and FecA of Escherichia coli require the proton motive force of the cytoplasmic membrane. The energy of the proton motive force is postulated to be transduced to the transport proteins by a protein complex that consists of the TonB, ExbB, and ExbD proteins. In the present study, TonB fragments lacking the cytoplasmic membrane anchor were exported to the periplasm by fusing them to the cleavable signal sequence of FecA. Overexpressed TonB(33-239), TonB(103-239), and TonB(122-239) fragments inhibited transport of ferrichrome by FhuA and of ferric citrate by FecA, transcriptional induction of the fecABCDE transport genes by FecA, infection by phage φ80, and killing of cells by colicin M via FhuA. Transport of ferrichrome by FhuAΔ5-160 was also inhibited by TonB(33-239), although FhuAΔ5-160 lacks the TonB box which is involved in TonB binding. The results show that TonB fragments as small as the last 118 amino acids of the protein interfere with the function of wild-type TonB, presumably by competing for binding sites at the transporters or by forming mixed dimers with TonB that are nonfunctional. In addition, the interactions that are inhibited by the TonB fragments must include more than the TonB box, since transport through corkless FhuA was also inhibited. Since the periplasmic TonB fragments cannot assume an energized conformation, these in vivo studies also agree with previous cross-linking and in vitro results, suggesting that neither recognition nor binding to loaded siderophore receptors is the energy-requiring step in the TonB-receptor interactions.


2021 ◽  
Vol 8 ◽  
Author(s):  
Dong Zhou ◽  
Feijie Zhi ◽  
Jiaoyang Fang ◽  
Weifang Zheng ◽  
Junmei Li ◽  
...  

Brucellosis is an endemic zoonotic infectious disease in the majority of developing countries, which causes huge economic losses. As immunogenic and protective antigens at the surface of Brucella spp., outer membrane proteins (Omps) are particularly attractive for developing vaccine and could have more relevant role in host–pathogen interactions. Omp16, a homolog to peptidoglycan-associated lipoproteins (Pals), is essential for Brucella survival in vitro. At present, the functions of Omp16 have been poorly studied. Here, the gene expression profile of RAW264.7 cells infected with Brucella suis vaccine strain 2 (B. suis S2) and ΔOmp16 was analyzed by RNA-seq to investigate the cellular response immediately after Brucella entry. The RNA-sequence analysis revealed that a total of 303 genes were significantly regulated by B. suis S2 24 h post-infection. Of these, 273 differentially expressed genes (DEGs) were upregulated, and 30 DEGs were downregulated. These DEGs were mainly involved in innate immune signaling pathways, including pattern recognition receptors (PRRs), proinflammatory cytokines, and chemokines by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. In ΔOmp16-infected cells, the expression of 52 total cells genes was significantly upregulated and that of 9 total cells genes were downregulated compared to B. suis S2-infected RAW264.7 cells. The KEGG pathway analysis showed that several upregulated genes were proinflammatory cytokines and chemokines, such as interleukin (IL)-6, IL-11, IL-12β, C–C motif chemokine (CCL2), and CCL22. All together, we clearly demonstrate that ΔOmp16 can alter macrophage immune-related pathways to increase proinflammatory cytokines and chemokines, which provide insights into illuminating the Brucella pathogenic strategies.


2006 ◽  
Vol 72 (1) ◽  
pp. 298-305 ◽  
Author(s):  
Uwe Remminghorst ◽  
Bernd H. A. Rehm

ABSTRACT An enzymatic in vitro alginate polymerization assay was developed by using 14C-labeled GDP-mannuronic acid as a substrate and subcellular fractions of alginate overproducing Pseudomonas aeruginosa FRD1 as a polymerase source. The highest specific alginate polymerase activity was detected in the envelope fraction, suggesting that cytoplasmic and outer membrane proteins constitute the functional alginate polymerase complex. Accordingly, no alginate polymerase activity was detected using cytoplasmic membrane or outer membrane proteins, respectively. To determine the requirement of Alg8, which has been proposed as catalytic subunit of alginate polymerase, nonpolar isogenic alg8 knockout mutants of alginate-overproducing P. aeruginosa FRD1 and P. aeruginosa PDO300 were constructed, respectively. These mutants were deficient in alginate biosynthesis, and alginate production was restored by introducing only the alg8 gene. Surprisingly, this resulted in significant alginate overproduction of the complemented P. aeruginosa Δalg8 mutants compared to nonmutated strains, suggesting that Alg8 is the bottleneck in alginate biosynthesis. 1H-NMR analysis of alginate isolated from these complemented mutants showed that the degree of acetylation increased from 4.7 to 9.3% and the guluronic acid content was reduced from 38 to 19%. Protein topology prediction indicated that Alg8 is a membrane protein. Fusion protein analysis provided evidence that Alg8 is located in the cytoplasmic membrane with a periplasmic C terminus. Subcellular fractionation suggested that the highest specific PhoA activity of Alg8-PhoA is present in the cytoplasmic membrane. A structural model of Alg8 based on the structure of SpsA from Bacillus subtilis was developed.


2020 ◽  
Vol 139 ◽  
pp. 153-160
Author(s):  
S Peeralil ◽  
TC Joseph ◽  
V Murugadas ◽  
PG Akhilnath ◽  
VN Sreejith ◽  
...  

Luminescent Vibrio harveyi is common in sea and estuarine waters. It produces several virulence factors and negatively affects larval penaeid shrimp in hatcheries, resulting in severe economic losses to shrimp aquaculture. Although V. harveyi is an important pathogen of shrimp, its pathogenicity mechanisms have yet to be completely elucidated. In the present study, isolates of V. harveyi were isolated and characterized from diseased Penaeus monodon postlarvae from hatcheries in Kerala, India, from September to December 2016. All 23 tested isolates were positive for lipase, phospholipase, caseinase, gelatinase and chitinase activity, and 3 of the isolates (MFB32, MFB71 and MFB68) showed potential for significant biofilm formation. Based on the presence of virulence genes, the isolates of V. harveyi were grouped into 6 genotypes, predominated by vhpA+ flaB+ ser+ vhh1- luxR+ vopD- vcrD+ vscN-. One isolate from each genotype was randomly selected for in vivo virulence experiments, and the LD50 ranged from 1.7 ± 0.5 × 103 to 4.1 ± 0.1 × 105 CFU ml-1. The expression of genes during the infection in postlarvae was high in 2 of the isolates (MFB12 and MFB32), consistent with the result of the challenge test. However, in MFB19, even though all genes tested were present, their expression level was very low and likely contributed to its lack of virulence. Because of the significant variation in gene expression, the presence of virulence genes alone cannot be used as a marker for pathogenicity of V. harveyi.


2020 ◽  
Vol 51 (4) ◽  
pp. 1038-1047
Author(s):  
Mawia & et al.

This study had as principal objective identification of osmotic-tolerant potato genotypes by using "in vitro" tissue culture and sorbitol as a stimulating agent, to induce water stress, which was added to the  culture nutritive medium in different concentration (0,50, 110, 220, 330 and 440 mM).  The starting point was represented by plantlets culture collection, belonging to eleven potato genotypes: Barcelona, Nectar, Alison, Jelly, Malice, Nazca, Toronto, Farida, Fabulla, Colomba and Spunta. Plantlets were multiplied between two internodes to obtain microcuttings (in sterile condition), which were inoculated on medium. Sorbitol-induced osmotic stress caused a significant reduction in the ascorbic acid, while the concentration of proline, H2O2 and solutes leakage increased compared with the control. Increased the proline content prevented lipid peroxidation, which played a pivotal role in the maintenance of membrane integrity under osmotic stress conditions. The extent of the cytoplasmic membrane damage depends on osmotic stress severity and the genotypic variation in the maintenance of membranes stability was highly associated with the ability of producing more amounts of osmoprotectants (proline) and the non-enzymic antioxidant ascorbic acid in response to osmotic stress level. The results showed that the genotypes Jelly, Nectar, Allison, Toronto, and Colomba are classified as highly osmotic stress tolerant genotypes, while the genotypes Nazca and Farida are classified as osmotic stress susceptible ones.


2019 ◽  
Vol 3 (1) ◽  
pp. 129-137
Author(s):  
Gbadebo E . Adeleke ◽  
Olaniyi T. Adedosu ◽  
Rachael O. Adeyi ◽  
John O. Fatoki

Background: Many plants have been identified for their insecticidal properties as alternatives to synthetic ones, which are toxic to untargeted organisms and environment. Ricinus communis (Castor) has been re-ported to exhibit insecticidal properties against insect pests. Zonocerus variegatus (Grasshopper) is a notable pest of several crops, and has been linked with great economic losses to farmers. The present study investigates the in-vitro toxicity of R. communis seed kernel extract (RCSKE) on the activities of selected antioxidant and hydrolytic enzymes in nymph and adult Zonocerus variegatus (Grasshopper), using cypermethrin (CYPER-M) and chlorpyrifos (CPF) as standard conventional pesticides. Methods: Seed kernel of Ricinus communis (Castor) was subjected to acidified aqueous extraction to obtain the extract (RCSKE). Crude enzyme preparations were obtained from nymph and adult Z. variegatus grass-hoppers. The in-vitro effects of different concentrations (15, 30, 45, 60, 75, 90 and 105μg/ml) each of RCSKE, CYPER-M and CPF on the activities of superoxide dismutase (SOD), catalase (CAT), acetylcholinesterase (AChE) and carboxylesterase (CES) in crude enzyme preparations were estimated spectrophotometrically. The level of statistical significance was 0.05. Results: The RCSKE significantly reduced the in-vitro SOD activity (p < 0.05) in nymph Z. variegatus at all the concentrations, whereas both CYPER-M and CPF significantly reduced the activity only at certain concentrations. The CAT activity in the nymph was significantly decreased by RCSKE and CPF at all the concentrations, but CYPER-M decreased it only at certain concentrations. In adult Z. variegatus, SOD activity was not significantly affected (p > 0.05), while CAT activity was significantly increased (p < 0.05) by the three agents at all the concentrations. The AChE and CES activities in the nymph were significantly reduced by RCSKE, CYPER-M and CPF at all the concentrations. The RCSKE and CPF significantly increased the CES activity, while CYPER-M caused a significant decrease in the activity in adult Z. variegatus. Conclusion: The seed kernel extract of Ricinus communis is an effective pesticidal agent and hence, it could be a source of biopesticide alternative with greater potential than cypermethrin and chlorpyrifos. In addition, the antioxidant, acetylcholinesterase and carboxylesterase enzymes in the nymphs of Z. variegatus grasshoppers are more susceptible to the effect of the extract than in the adult grasshoppers.


2020 ◽  
Vol 27 ◽  
Author(s):  
Leydianne Leite de Siqueira Patriota ◽  
Dayane Kelly Dias do Nascimento Santos ◽  
Bárbara Rafaela da Silva Barros ◽  
Lethícia Maria de Souza Aguiar ◽  
Yasmym Araújo Silva ◽  
...  

Background: Protease inhibitors have been isolated from plants and present several biological activities, including immunomod-ulatory action. Objective: This work aimed to evaluate a Moringa oleifera flower trypsin inhibitor (MoFTI) for acute toxicity in mice, hemolytic activity on mice erythrocytes and immunomodulatory effects on mice splenocytes. Methods: The acute toxicity was evaluated using Swiss female mice that received a single dose of the vehicle control or MoFTI (300 mg/kg, i.p.). Behavioral alterations were observed 15–240 min after administration, and survival, weight gain, and water and food consumption were analyzed daily. Organ weights and hematological parameters were analyzed after 14 days. Hemolytic activity of MoFTI was tested using Swiss female mice erythrocytes. Splenocytes obtained from BALB/c mice were cultured in the absence or presence of MoFTI for the evaluation of cell viability and proliferation. Mitochondrial membrane potential (ΔΨm) and reactive oxygen species (ROS) levels were also determined. Furthermore, the culture supernatants were analyzed for the presence of cytokines and nitric oxide (NO). Results: MoFTI did not cause death or any adverse effects on the mice except for abdominal contortions at 15–30 min after administration. MoFTI did not exhibit a significant hemolytic effect. In addition, MoFTI did not induce apoptosis or necrosis in splenocytes and had no effect on cell proliferation. Increases in cytosolic and mitochondrial ROS release, as well as ΔΨm reduction, were observed in MoFTI-treated cells. MoFTI was observed to induce TNF-α, IFN-γ, IL-6, IL-10, and NO release. Conclusion: These results contribute to the ongoing evaluation of the antitumor potential of MoFTI and its effects on other immunological targets.


2019 ◽  
Vol 15 (02) ◽  
pp. 22-25
Author(s):  
Sunaina Thakur ◽  
Subhash Verma ◽  
Prasenjit Dhar ◽  
Mandeep Sharma

Respiratory infections of sheep and goats cause heavy morbidity and mortality, leading to huge economic losses. Conventional methods of diagnosis that include isolation and identification of incriminating microbes are time-consuming and fraught with logistic challenges. Direct detection of incriminating microbes using molecular tools is gaining popularity in clinical, microbiological settings. In this study, a total of 50 samples (44 nasal swabs and 6 lung tissues) from sheep and goats were screened for the detection of different bacterial species by in vitro amplification of genus or species-specific genes. Histophilus somni was detected in 2% goat samples, Trueperella pyogenes in 20% goat nasal swabs, whereas 22% goat nasal swab samples were found positive for Mycoplasma spp. None of the samples from sheep was detected positive for H. somni, T. pyogenes, Mycoplasma spp. Similarly, all samples, irrespective, whether from sheep or goats, showed negative results for Pasteurella multocida, Mannheimia haemolytica, and Corynebacterium pseudotuberculosis.


Sign in / Sign up

Export Citation Format

Share Document