scholarly journals Functional characterization of Fur in iron metabolism, oxidative stress resistance and virulence of Riemerella anatipestifer

2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Mi Huang ◽  
Mafeng Liu ◽  
Jiajun Liu ◽  
Dekang Zhu ◽  
Qianying Tang ◽  
...  

AbstractIron is essential for most bacteria to survive, but excessive iron leads to damage by the Fenton reaction. Therefore, the concentration of intracellular free iron must be strictly controlled in bacteria. Riemerella anatipestifer (R. anatipestifer), a Gram-negative bacterium, encodes the iron uptake system. However, the iron homeostasis mechanism remains largely unknown. In this study, it was shown that compared with the wild type R. anatipestifer CH-1, R. anatipestifer CH-1Δfur was more sensitive to streptonigrin, and this effect was alleviated when the bacteria were cultured in iron-depleted medium, suggesting that the fur mutant led to excess iron accumulation inside cells. Similarly, compared with R. anatipestifer CH-1∆recA, R. anatipestifer CH-1∆recAΔfur was more sensitive to H2O2-induced oxidative stress when the bacteria were grown in iron-rich medium rather than iron-depleted medium. Accordingly, it was shown that R. anatipestifer CH-1∆recAΔfur produced more intracellular ROS than R. anatipestifer CH-1∆recA in iron-rich medium. Electrophoretic mobility shift assays showed that R. anatipestifer CH-1 Fur suppressed the transcription of putative iron uptake genes through binding to their promoter regions. Finally, it was shown that compared with the wild type, R. anatipestifer CH-1Δfur was significantly attenuated in ducklings and that the colonization ability of R. anatipestifer CH-1Δfur in various tissues or organs was decreased. All these results suggested that Fur is important for iron homeostasis in R. anatipestifer and its pathogenic mechanism.

2021 ◽  
Vol 7 (9) ◽  
pp. 756
Author(s):  
Suzie Kang ◽  
Hyewon Seo ◽  
Min-Gyu Lee ◽  
Cheol-Won Yun

To understand the relationship between carbon or nitrogen utilization and iron homeostasis, we performed an iron uptake assay with several deletion mutants with partial defects in carbon or nitrogen metabolism. Among them, some deletion mutants defective in carbon metabolism partially and the MEP2 deletion mutant showed lower iron uptake activity than the wild type. Mep2 is known as a high-affinity ammonia transporter in Saccharomyces cerevisiae. Interestingly, we found that nitrogen starvation resulted in lower iron uptake activity than that of wild-type cells without downregulation of the genes involved in the high-affinity iron uptake system FET3/FTR1. However, the gene expression of FRE1 and CTR1 was downregulated by nitrogen starvation. The protein level of Ctr1 was also decreased by nitrogen starvation, and addition of copper to the nitrogen starvation medium partially restored iron uptake activity. However, the expression of MAC1, which is a copper-responsive transcriptional activator, was not downregulated by nitrogen starvation at the transcriptional level but was highly downregulated at the translational level. Mac1 was downregulated dramatically under nitrogen starvation, and treatment with MG132, which is an inhibitor of proteasome-dependent protein degradation, partially attenuated the downregulation of Mac1. Taken together, these results suggest that nitrogen starvation downregulates the high-affinity iron uptake system by degrading Mac1 in a proteasome-dependent manner and eventually downregulates copper metabolism.


2018 ◽  
Vol 84 (20) ◽  
Author(s):  
Lulu Liu ◽  
Shisheng Li ◽  
Sijing Wang ◽  
Ziyang Dong ◽  
Haichun Gao

ABSTRACT Shewanella oneidensis is an extensively studied bacterium capable of respiring minerals, including a variety of iron ores, as terminal electron acceptors (EAs). Although iron plays an essential and special role in iron respiration of S. oneidensis, little has been done to date to investigate the characteristics of iron transport in this bacterium. In this study, we found that all proteins encoded by the pub-putA-putB cluster for putrebactin (S. oneidensis native siderophore) synthesis (PubABC), recognition-transport of Fe3+-putrebactin across the outer membrane (PutA), and reduction of ferric putrebactin (PutB) are essential to putrebactin-mediated iron uptake. Although homologs of PutA are many, none can function as its replacement, but some are able to work with other bacterial siderophores. We then showed that Fe2+-specific Feo is the other primary iron uptake system, based on the synthetical lethal phenotype resulting from the loss of both iron uptake routes. The role of the Feo system in iron uptake appears to be more critical, as growth is significantly impaired by the absence of the system but not of putrebactin. Furthermore, we demonstrate that hydroxyl acids, especially α-types such as lactate, promote iron uptake in a Feo-dependent manner. Overall, our findings underscore the importance of the ferrous iron uptake system in metal-reducing bacteria, providing an insight into iron homeostasis by linking these two biological processes. IMPORTANCE S. oneidensis is among the first- and the best-studied metal-reducing bacteria, with great potential in bioremediation and biotechnology. However, many questions regarding mechanisms closely associated with those applications, such as iron homeostasis, including iron uptake, export, and regulation, remain to be addressed. Here we show that Feo is a primary player in iron uptake in addition to the siderophore-dependent route. The investigation also resolved a few puzzles regarding the unexpected phenotypes of the putA mutant and lactate-dependent iron uptake. By elucidating the physiological roles of these two important iron uptake systems, this work revealed the breadth of the impacts of iron uptake systems on the biological processes.


2019 ◽  
Vol 32 (10) ◽  
pp. 1324-1335 ◽  
Author(s):  
Natasha T. Forester ◽  
Geoffrey A. Lane ◽  
Catherine M. McKenzie ◽  
Iain L. Lamont ◽  
Linda J. Johnson

In ascomycetes and basidiomycetes, iron-responsive GATA-type transcriptional repressors are involved in regulating iron homeostasis, notably to prevent iron toxicity through control of iron uptake. To date, it has been unknown whether this iron regulator contributes toward mutualistic endosymbiosis of microbes with plants, a system where the endophyte must function within the constraints of an in-host existence, including a dependency on the host for nutrient acquisition. Functional characterization of one such protein, SreA from Epichloë festucae, a fungal endosymbiont of cool-season grasses, indicates that regulation of iron homeostasis processes is important for symbiotic maintenance. The deletion of the sreA gene (ΔsreA) led to iron-dependent aberrant hyphal growth and the gradual loss of endophyte hyphae from perennial ryegrass. SreA negatively regulates the siderophore biosynthesis and high-affinity iron uptake systems of E. festucae, similar to other fungi, resulting in iron accumulation in mutants. Our evidence suggests that SreA is involved in the processes that moderate Epichloë iron acquisition from the plant apoplast, because overharvesting of iron in ΔsreA mutants was detected as premature chlorosis of the host using a hydroponic plant growth assay. E. festucae appears to have a tightly regulated iron management system, involving SreA that balances endophyte growth with its survival and prevents overcompetition with the host for iron in the intercellular niche, thus promoting mutualistic associations. Mutations that interfere with Epichloë iron management negatively affect iron-dependent fungal growth and destabilize mutualistic Epichloë –ryegrass associations.


2007 ◽  
Vol 73 (19) ◽  
pp. 6144-6149 ◽  
Author(s):  
Mark S. Turner ◽  
Yu Pei Tan ◽  
Philip M. Giffard

ABSTRACT In Lactococcus lactis, the interactions between oxidative defense, metal metabolism, and respiratory metabolism are not fully understood. To provide an insight into these processes, we isolated and characterized mutants of L. lactis resistant to the oxidizing agent tellurite (TeO3 2−), which generates superoxide radicals intracellularly. A collection of tellurite-resistant mutants was obtained using random transposon mutagenesis of L. lactis. These contained insertions in genes encoding a proton-coupled Mn2+/Fe2+ transport homolog (mntH), the high-affinity phosphate transport system (pstABCDEF), a putative osmoprotectant uptake system (choQ), and a homolog of the oxidative defense regulator spx (trmA). The tellurite-resistant mutants all had better survival than the wild type following aerated growth. The mntH mutant was found to be impaired in Fe2+ uptake, suggesting that MntH is a Fe2+ transporter in L. lactis. This mutant is capable of carrying out respiration but does not generate as high a final pH and does not exhibit the long lag phase in the presence of hemin and oxygen that is characteristic of wild-type L. lactis. This study suggests that tellurite-resistant mutants also have increased resistance to oxidative stress and that intracellular Fe2+ can heighten tellurite and oxygen toxicity.


2002 ◽  
Vol 70 (9) ◽  
pp. 4968-4976 ◽  
Author(s):  
Susanna Ricci ◽  
Robert Janulczyk ◽  
Lars Björck

ABSTRACT Ferric uptake regulator (Fur) and Fur-like proteins form an important family of transcriptional regulators in many bacterial species. In this work we have characterized a Fur-like protein, the peroxide regulator PerR, in an M1 serotype of Streptococcus pyogenes. To determine the role of PerR in S. pyogenes, we inactivated the gene by allelic replacement. PerR-deficient bacteria showed 48% reduction of 55Fe incorporation from the culture medium. Transcriptional analysis revealed that mtsA, encoding a metal-binding protein of an ABC transporter in S. pyogenes, was transcribed at lower levels than were wild-type cells. Although total iron accumulation was reduced, the growth of the mutant strain was not significantly hampered. The mutant showed hyperresistance to hydrogen peroxide, and this response was induced in wild-type cells by growth in aerobiosis, suggesting that PerR acts as an oxidative stress-responsive repressor. PerR may also participate in the response to superoxide stress, as the perR mutant was more sensitive to the superoxide anion and had a reduced transcription of sodA, which encodes the sole superoxide dismutase of S. pyogenes. Complementation of the mutation with a functional perR gene restored 55Fe incorporation, response to peroxide stress, and transcription of both mtsA and sodA to levels comparable to those of wild-type bacteria. Finally, the perR mutant was attenuated in virulence in a murine air sac model of infection (P < 0.05). These results demonstrate that PerR is involved in the regulation of iron homeostasis and oxidative stress responses and that it contributes to the virulence of S. pyogenes.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3585-3585
Author(s):  
Florent M. Martin ◽  
Timothy J. Gilmartin ◽  
Gabriela Bydlon ◽  
Megan L. Welsh ◽  
Jeffrey S. Friedman

Abstract Manganese superoxide dismutase (SOD2) detoxifies superoxide anion radicals generated by mitochondrial respiration (Weisiger and Fridovich, J. Biol. Chem. 1973). While SOD2-deficiency is lethal, SOD2-deficient (SOD2−/−) hematopoietic stem cells can rescue lethally irradiated wild-type mice. SOD2−/− hematopoietic chimeras show a persistent hemolytic anemia similar to human sideroblastic anemia (Friedman et al. J. Exp. Med. 2001). SOD2−/− erythroid progenitor cells have increased mitochondrial mass, and reticulocytes show mitochondrial iron deposition. Mature RBC show abundant siderotic granules, evidence of a defect in iron incorporation into heme, and shortened lifespan. SOD2−/− progenitors and mature RBC show both enhanced reactive oxygen species production and protein oxidative damage (Friedman et al. Blood 2004; Martin et al. Submitted). To define early events in the pathogenesis of the SOD2-deficiency anemia and, in particular to identify genes involved in the response of erythroid progenitors to oxidative stress, we compared gene expression of sorted TER-119+ CD71+ erythroblasts from SOD2−/−versus wild-type hematopoietic stem cells recipients. Using cDNA microarrays and class comparison analysis, we identified 600 transcripts as significantly discriminant between genotypes. Analysis showed that eleven transcripts encoding different subunits of the mitochondrial oxidative phosphorylation, ATP synthase, and TCA cycle were down-regulated in SOD2−/− erythroblasts. Previous work showed similar results at the protein level in SOD2−/− RBC (Friedman et al. Blood 2004) and at the activity level in specific tissues of SOD2−/− neonates prior to death (Melov et al. PNAS 1999). One interpretation is that SOD2−/− erythroblasts show metabolic decline. Of interest, a single transcript involved in iron homeostasis, Trfr, was found to be expressed at twice the levels found in wild-type erythroblasts (p&lt;0.0007, parametric p value). Trfr encodes transferrin receptor 1; two-fold up-regulation of transferrin receptor 1 was also shown at the protein level by flow cytometry analysis of SOD2−/− erythroblasts (p&lt;0.0001, unpaired two-tailed t-test). Transferrin receptor 1 is the cellular gatekeeper for iron uptake whose genetic inactivation induces abnormal erythropoiesis and iron homeostasis (Levy et al. Nat. Genet. 1999). The stability of the Trfr transcript is highly regulated by iron regulatory proteins (IRPs), that are known to be controlled by numerous effectors including reactive oxygen species (Hentze et al. Cell 2004, for review). We focus our current work on investigating, in vitro and in vivo, the role that up-regulation of transferrin receptor 1, likely through oxidative stress-mediated IRPs activity regulation, plays in iron overload in our SOD2-deficiency model. Taken together, our findings raise the possibility that increased iron delivery may be sufficient to cause sideroblastic anemia or may contribute to a self-reinforcing cycle where oxidative stress favors increased iron, and increased iron results in enhanced oxidative damage.


2010 ◽  
Vol 78 (11) ◽  
pp. 4850-4859 ◽  
Author(s):  
Miranda Lo ◽  
Gerald L. Murray ◽  
Chen Ai Khoo ◽  
David A. Haake ◽  
Richard L. Zuerner ◽  
...  

ABSTRACT Leptospirosis is a globally significant zoonosis caused by Leptospira spp. Iron is essential for growth of most bacterial species. Since iron availability is low in the host, pathogens have evolved complex iron acquisition mechanisms to survive and establish infection. In many bacteria, expression of iron uptake and storage proteins is regulated by Fur. L. interrogans encodes four predicted Fur homologs; we have constructed a mutation in one of these, la1857. We conducted microarray analysis to identify iron-responsive genes and to study the effects of la1857 mutation on gene expression. Under iron-limiting conditions, 43 genes were upregulated and 49 genes were downregulated in the wild type. Genes encoding proteins with predicted involvement in inorganic ion transport and metabolism (including TonB-dependent proteins and outer membrane transport proteins) were overrepresented in the upregulated list, while 54% of differentially expressed genes had no known function. There were 16 upregulated genes of unknown function which are absent from the saprophyte L. biflexa and which therefore may encode virulence-associated factors. Expression of iron-responsive genes was not significantly affected by mutagenesis of la1857, indicating that LA1857 is not a global regulator of iron homeostasis. Upregulation of heme biosynthetic genes and a putative catalase in the mutant suggested that LA1857 is more similar to PerR, a regulator of the oxidative stress response. Indeed, the la1857 mutant was more resistant to peroxide stress than the wild type. Our results provide insights into the role of iron in leptospiral metabolism and regulation of the oxidative stress response, including genes likely to be important for virulence.


1995 ◽  
Vol 73 (S1) ◽  
pp. 140-147 ◽  
Author(s):  
S. A. Leong ◽  
Z. An ◽  
B. Mei ◽  
J. McEvoy ◽  
Q. Zhao ◽  
...  

The molecular biology of the high affinity, siderophore-mediated iron uptake system of the basidiomycete fungus Ustilago maydis is under investigation. Ustilago maydis produces two cyclic peptide siderophores, ferrichrome and ferrichrome A. Biosynthesis of both siderophores is initiated by ornithine-N5-oxygenase, the product of sid1. sid1 mRNA accumulates only during growth under iron starvation conditions in wild-type cells or constitutively in urbs1 mutants, urbs1 encodes a 100-kDa protein with putative Zn finger domains that share sequence identity with those of the GATA family of transcription factors. The promoter region of sid1 was defined by deletion analysis of a 3.0-kb region 5′ to the translational start of sid1 using the Escherichia coli GUS gene as a reporter. Three regions were defined by this analysis to be critical to expression of sid1. These include (i) a 306-bp region containing two GATA sequences and mapping 2.4 kb from the start of translation; (ii) a 439-bp region immediately 5′ to the start of transcription; and (iii) a region encompassing the first intron of sid1. Deletion of the GATA sequences resulted in deregulated expression of sid1, while elimination of the latter two sequences ablated expression of the gene under all circumstances. Current efforts are focused on determining whether Urbsl interacts directly with the sid1 promoter via the GATA sequences and whether this interaction is dependent upon iron. Key words: GATA, transcription factor, siderophore, ferrichrome, iron, Urbs1.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiraporn Jirakkakul ◽  
Nuchnudda Wichienchote ◽  
Somsak Likhitrattanapisal ◽  
Supawadee Ingsriswang ◽  
Thippawan Yoocha ◽  
...  

AbstractThe putative ferricrocin synthetase gene ferS in the fungal entomopathogen Beauveria bassiana BCC 2660 was identified and characterized. The 14,445-bp ferS encodes a multimodular nonribosomal siderophore synthetase tightly clustered with Fusarium graminearum ferricrocin synthetase. Functional analysis of this gene was performed by disruption with the bar cassette. ΔferS mutants were verified by Southern and PCR analyses. HPLC and TLC analyses of crude extracts indicated that biosynthesis of ferricrocin was abolished in ΔferS. Insect bioassays surprisingly indicated that ΔferS killed the Spodoptera exigua larvae faster (LT50 59 h) than wild type (66 h). Growth and developmental assays of the mutant and wild type demonstrated that ΔferS had a significant increase in germination under iron depletion and radial growth and a decrease in conidiation. Mitotracker staining showed that the mitochondrial activity was enriched in ΔferS under both iron excess and iron depletion. Comparative transcriptomes between wild type and ΔferS indicated that the mutant was increased in the expression of eight cytochrome P450 genes and those in iron homeostasis, ferroptosis, oxidative stress response, ergosterol biosynthesis, and TCA cycle, compared to wild type. Our data suggested that ΔferS sensed the iron excess and the oxidative stress and, in turn, was up-regulated in the antioxidant-related genes and those in ergosterol biosynthesis and TCA cycle. These increased biological pathways help ΔferS grow and germinate faster than the wild type and caused higher insect mortality than the wild type in the early phase of infection.


2021 ◽  
Author(s):  
Olena K. Vatamaniuk ◽  
Ju-Chen Chia ◽  
Jiapei Yan ◽  
Maryam Rahmati Ishka ◽  
Marta Marie Faulkner ◽  
...  

Copper and iron are micronutrients but are toxic when they accumulate in cells in excess. Crosstalk between copper and iron homeostasis in Arabidopsis thaliana has been documented and includes iron accumulation under copper deficiency and vice versa. However, molecular components of this crosstalk are not well understood. Iron concentration in the phloem has been suggested to act systemically, negatively regulating iron uptake to the root. Consistently, systemic iron signaling is disrupted in A. thaliana mutants lacking the phloem companion cell-localized iron transporter, AtOPT3, and opt3 mutants hyperaccumulate iron. Here, we report that in addition to iron, AtOPT3 transports copper and mediates copper loading to the phloem for delivery from sources to sinks. As a result of this function, the opt3-3 mutant accumulates less copper in the phloem, roots, developing leaves and embryos compared to wild type, is sensitive to copper deficiency, and mounts transcriptional copper deficiency response. Because copper deficiency has been shown to stimulate iron accumulation, we propose that reduced copper concentration in the phloem of the opt3-3 mutant and its constitutive copper deficiency contribute to iron overaccumulation in its tissues. Our data assign new transport capabilities to AtOPT3 and increase understanding of copper - iron interactions and signaling.


Sign in / Sign up

Export Citation Format

Share Document