scholarly journals Exogenously applied nitrogenous fertilizers and effective microorganisms improve plant growth of stevia (Stevia rebaudiana Bertoni) and soil fertility

AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohamed Ahmed Youssef ◽  
Ahmed Fathy Yousef ◽  
Muhammad Moaaz Ali ◽  
Alshaymaa I. Ahmed ◽  
Sobhi F. Lamlom ◽  
...  

AbstractThe effects of different fertilizers and biofertilizers on crop production to increase plant growth, improve quality and yield components (dry leaves yield, leaf protein, and stevioside) of crops has been extensively studied. However, the combination of both types of fertilizers have rarely been investigated. To explore the effect of different fertilizers and biofertilizers on stevia plant, a two-year field experiment was conducted to investigate the growth response of stevia plants under the influence of nitrogenous fertilizers (NFs) and effective microorganisms (EM). The experiment was laid out in a split-plot design, with EM as the main plot factor (−EM and +EM) and NFs as the subplot factor [control, chemical NFs (Ch-N) and organic NFs (Org-N)]. The results showed that, plants treated with EM and Org-N showed 2-, 2.2-, 2.4-, 2.5-, 3.3- and 3-fold increases in plant height, number of branches, total leaf area, plant fresh weight, plant dry weight and leaf dry yield, respectively, compared to untreated plants. Similarly, plants receiving EM along with Ch-N showed 1.86-, 1.7-, 2.2-, 2.12-, 3-, and 2.72-fold increases in the same traits. Total chlorophyll, protein, N, P, K and sativoside contents were increased by 88.8, 152, 138, 151.5, 43 and 137.5% when EM and Org-N were applied to stevia plants. Application of EM together with Ch-N increased these properties by 0.5, 127.7, 115, 216, 42.6 and 83.8%, respectively in the same traits. Overall, the combined application of NFs and EM improved growth, yield and nutrient accumulation in stevia plants.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dilfuza Jabborova ◽  
Annapurna Kannepalli ◽  
Kakhramon Davranov ◽  
Abdujalil Narimanov ◽  
Yuriy Enakiev ◽  
...  

AbstractDrought stress is the major abiotic factor limiting crop production. Co-inoculating crops with nitrogen fixing bacteria and plant growth-promoting rhizobacteria (PGPR) improves plant growth and increases drought tolerance in arid or semiarid areas. Soybean is a major source of high-quality protein and oil for humans. It is susceptible to drought stress conditions. The co-inoculation of drought-stressed soybean with nodulating rhizobia and root-colonizing, PGPR improves the root and the shoot growth, formation of nodules, and nitrogen fixation capacity in soybean. The present study was aimed to observe if the co-inoculation of soybean (Glycine max L. (Merr.) nodulating with Bradyrhizobium japonicum USDA110 and PGPR Pseudomonas putida NUU8 can enhance drought tolerance, nodulation, plant growth, and nutrient uptake under drought conditions. The results of the study showed that co-inoculation with B. japonicum USDA110 and P. putida NUU8 gave more benefits in nodulation and growth of soybean compared to plants inoculated with B. japonicum USDA110 alone and uninoculated control. Under drought conditions, co-inoculation of B. japonicum USDA 110 and P. putida NUU8 significantly enhanced the root length by 56%, shoot length by 33%, root dry weight by 47%, shoot dry weight by 48%, and nodule number 17% compared to the control under drought-stressed. Co-inoculation with B. japonicum, USDA 110 and P. putida NUU8 significantly enhanced plant and soil nutrients and soil enzymes compared to control under normal and drought stress conditions. The synergistic use of B. japonicum USDA110 and P. putida NUU8 improves plant growth and nodulation of soybean under drought stress conditions. The results suggested that these strains could be used to formulate a consortium of biofertilizers for sustainable production of soybean under drought-stressed field conditions.


2018 ◽  
Vol 53 (4) ◽  
pp. 259-264
Author(s):  
MZ Hossain ◽  
Sushmita Dey ◽  
MS Islam

Groundwater arsenic contamination has become a threat to the crop production potential in the soils of vast areas of Bangladesh. Situation is grave in some districts of the country, particularly the southern part. A pot experiment was conducted to investigate the effects of arsenic treated irrigation water (0, 1, 2, 5 and 10 mgL-1), where a total of ten (10) irrigations were provided thus the treatments received 0, 10, 20, 50, and 100 mg arsenic (As) pot-1. Effects of applied levels of arsenic on Amaranthus gangeticus (Lal shak) were evaluated in terms of the growth, yield, major nutrients’ content, and their translocation in the plant. As treatments significantly reduced (p≤0.05) the dry weight of shoot and root by 19.31% and 44.03% respectively. Both total and available concentrations of nitrogen (N), potassium (K) and sulfur (S) were significantly (p≤ 0.05) suppressed by the As treatments, while only higher three doses significantly (p≤ 0.05) affected both levels of concentrations of phosphorus (P), calcium (Ca) and magnesium (Mg). Translocation coefficients for soil to root for P, K, S, and Mg were significantly reduced (p≤ 0.05), while translocation coefficients for root to shoot were significantly increased (p≤ 0.05) for K and S by 5 and 10 mgL-1 of arsenic treatments.Bangladesh J. Sci. Ind. Res.53(4), 259-264, 2018


2019 ◽  
Vol 141 ◽  
pp. 240-249 ◽  
Author(s):  
Yuming Sun ◽  
Menglan Hou ◽  
Luis A.J. Mur ◽  
Yongheng Yang ◽  
Ting Zhang ◽  
...  

2018 ◽  
Vol 31 (4) ◽  
pp. 860-870
Author(s):  
Marcele de Cássia Henriques dos Santos Moraes ◽  
Erika Valente de Medeiros ◽  
Dayane da Silva de Andrade ◽  
Leandro Dias de Lima ◽  
Ivonaldo Carlos da Silva Santos ◽  
...  

ABSTRACT Plant growth promoter microorganisms have been studied as important tools for increasing crop production. Lettuce is the most consumed hardwood crop in the world. Numerous microorganisms are capable of acting in a beneficial way in the growth of this culture. The objective of the present study was to evaluate the efficacy of Trichoderma and Pseudomonas on the microbial biomass, enzymatic activities in sandy soil and lettuce production. The experimental design was completely randomized with ten replicates and treatments: CONT (absolute control); CM (control with cattle manure fertilization); CMB (with fertilization and Pseudomonas sp.); CMF (with fertilization and T. aureoviride) and CMBF (with fertilization and the two microorganisms combined). The fertilizer used was organic with cattle manure in a dose recommended for the culture. This study evaluated the production of lettuce, microbial biomass and the enzymatic activity of acid phosphatase, alkaline phosphatase and urease. The combined application of CMBF was efficient in increasing lettuce production, because it increased 85% of the cv. Veronica cultivated on sandy soil. The combined use of plant growth promoting microorganisms resulted to an increase in microbial biomass. In lettuce crops, it is recommended to use T. aureoviride URM 5158 and Pseudomonas sp. UAGF 14 in lettuce crops, because improved lettuce production, improves the biochemical quality of soils measured by absolute and specific enzymatic activities per unit of microbial biomass.


2017 ◽  
Vol 48 (5) ◽  
Author(s):  
Al-Obaidy & Khierallah

This research was conducted to study the effect of some plant growth regulators on in vitro shoots multiplication of stevia (Stevia rebaudiana Bertoni). The experiments included tests of various combinations of KIN with IBA or IAA in the shoot multiplication. Results indicated that KIN at 1.0 mg. L-1 plus 0.3 mg. L-1 of IBA produced the highest number of shoots (3.5 shoots) while KIN at 1.5 mg. L-1 plus IBA at 1.0 mg. L-1 produced the lowest shoot length (1.14 cm).  Hormone free medium produced the highest rate of the leaves number reached 28.56 leaves. KIN and IBA interaction increased fresh and dry weight significantly.   Treatment contained 2.0 mg -1 KIN plus 0.3 mg. L-1 IBA produced the highest fresh weight (1.739 g) while 0.5 mg. L-1 KIN and 0.3 mg. L-1 IBA produced the highest dry weight (0.822 g). As for the effect of interaction between the IAA and KIN it was significant in the number of shoots formed. Interaction between 1.0 mg. L-1 KIN with 0.1 mg. L-1IAA produced the highest number of shoots (3.8 shoots). Shoots length reached 8.10 cm in the media with 0.3 mg. L-1 IAA only. The highest fresh weight (1.267 g) was achieved with the interaction between 1.0 mg. L-1 KIN and 0.3 mg. L-1 IAA while 0.5 mg. L-1IAA without KIN produced the highest dry weight reached 0.138 g.  Shoots multiplication was improved by incorporation of the cytokinin TDZ in culture media. Shoots number, fresh and dry weights were increased significantly by adding 0.05 mg. L-1 of TDZ at present of 0.3 mg. L-1 of IBA giving 6.6 shoots, 0.974 g and 0.144 g respectively while shoots length decreased significantly as media without TDZ produced the highest shoots length reached 9.32 cm. The above results can adopt for the successful in vitro shoot multiplication of Stevia plants. 


2016 ◽  
Vol 79 (2) ◽  
Author(s):  
. SUMARYONO ◽  
Masna Maya SINTA

AbstractStevia (Stevia rebaudiana Bertoni) is a natural zero-calorie sweetener plant grown in a high population density.Tissue culture technique is useful for rapid mass propagationof plants to provide superior planting materials. Experimentswere conducted to increase growth and multiplication ofshoots and vigor of plantlets of stevia. Explants used wereapical and axillary buds from plantlets grown on MS mediumwithout plant growth regulators. Combinations of BA andIAA at different concentrations were used for shoot growthand multiplication, whereas plant growth retardants(ancymidol and paclobutrazol) and light intensity were usedfor plantlet vigor. The results showed that stevia explantscultured on MS medium without plant growth regulatorsproduced the highest shoots (4.5 cm) with two shoots perexplant. The best multiplication rate of shoots were found onMS medium added with 1.13 mg/L BA combined with0.35 mg/L IAA which produced on average 4.5 shoots and11.9 nodes per initial explant. Ancymidol and paclobutrazolconcentrations affected significantly growth and vigor ofstevia plantlets. Increasing the concentration of ancymidoland paclobutrazol decreased plantlet height and biomassfresh weight, but increased stem diameter. Paclobutrazol at0.1 mg/L was the best treatment to increase the vigor ofstevia plantlets. Light intensity at 20 µmol/m 2 /s gave betterplantlet vigor than other light intensities. It can be concludedthat multiplication of stevia shoots should be grown on MSmedium supplemented with 1.13 mg/L BA + 0.35 mg/L IAAand the vigor of the shoots can be increased by culturing onMS medium containing 0.1 mg/L paclobutrazol underfluorescence lamps with 20 µmol/m 2 /s light intensity.AbstrakStevia (Stevia rebaudiana Bertoni) adalah tanamanpemanis alami nir-kalori yang ditanam dengan kerapatanpopulasi yang sangat tinggi. Teknik kultur jaringan dapatdigunakan untuk perbanyakan tanaman secara massal dancepat untuk menyediakan bahan tanam unggul. Penelitiantelah dilakukan untuk meningkatkan pertumbuhan danmultiplikasi tunas dan keragaan planlet stevia. Eksplan yangdigunakan adalah tunas pucuk dan tunas samping dari planletyang ditumbuhkan pada medium MS tanpa zat pengaturtumbuh. Kombinasi BA dan IAA dengan konsentrasi yangberbeda digunakan untuk pertumbuhan dan multiplikasitunas, sedangkan zat penghambat tumbuh (ansimidol danpaklobutrazol) serta intensitas cahaya digunakan untukkeragaan planlet. Hasil penelitian menunjukkan bahwaeksplan stevia yang ditumbuhkan pada medium MS tanpa zatpengatur tumbuh menghasilkan tunas paling tinggi (4,5 cm)dengan dua tunas per eksplan. Multiplikasi tunas terbaikdiperoleh pada medium dengan BA 1,13 mg/L yangdikombinasikan dengan IAA 0,35 mg/L yang menghasilkan4,5 tunas dan 11,9 ruas per eksplan awal. Konsentrasiansimidol dan paklobutrazol berpengaruh nyata terhadappertumbuhan dan keragaan planlet stevia. Meningkatnyakonsentrasi ansimidol dan paklobutrazol menurunkan tinggiplanlet dan bobot basah biomassa, tetapi meningkatkandiameter batang. Paklobutrazol pada konsentrasi 0,1 mg/Lmerupakan perlakuan terbaik untuk meningkatkan keragaanplanlet stevia. Intensitas cahaya pada 20 µmol/m 2 /detikmemberikan keragaan planlet yang lebih baik dibandingkanintensitas cahaya yang lain. Dapat disimpulkan bahwamultiplikasi tunas stevia sebaiknya dilakukan pada mediumMS ditambah BA 1,13 mg/L + IAA 0,35 mg/L dan keragaanplanlet dapat ditingkatkan dengan menanam planlet padamedium MS ditambah paklobutrazol 0,1 mg/L di bawahlampu fluoresen dengan intensitas cahaya 20 µmol/m 2 /detik.


1989 ◽  
Vol 67 (5) ◽  
pp. 1317-1324 ◽  
Author(s):  
Y. Bashan ◽  
Y. Ream ◽  
Hanna Levanony ◽  
A. Sade

Inoculation of seven different crop plant species by Azospirillum brasilense Cd resulted in an increase in plant yield, as well as in changes in several other plant parameters, in tomato, eggplant, pepper, and cotton plants. Analysis of 56 different experiments revealed that the rate of success (positive plant response) ranged from 71 to 75 %. The dry weight of plants and yield responses ranged from significantly high yield increases to negligible or no response in similarly performed experiments. The average increases in yield in the positive response experiments were 30, 23, 18, and 16% for tomato, eggplant, pepper, and cotton, respectively. Significant earlier maturation was also detected in the four responding plant species. The response of other plant growth parameters varied between plant species. The level of root colonization by A. brasilense Cd was similar in all four plant species, i.e. root population size of 5 × 105 cfu/g fresh weight root. It is suggested that inoculation of noncereal crop plants by the cereal-root originate A. brasilense Cd is nonspecific with inconsistency in plant response to inoculation.


2020 ◽  
Vol 50 (1) ◽  
Author(s):  
Marta Teresa Rokosa ◽  
Danuta Kulpa

ABSTRACT: The aim of the study was to develop optimum composition of plant growth regulators in media for the propagation and rooting of shoots of stevia (Stevia rebaudiana Bertoni) in in vitro cultures. Single-node shoot fragments obtained from plants propagated on MS medium were placed onto media supplemented with: BAP, 2iP and KIN at concentrations: 0.5, 1, 2 and 5 mg∙dm-3, whereas at the rooting stage with addition of: IAA, IBA and NAA at concentrations 1, 2, 4 and 8 mg∙dm-3. The highest number of shoots and leaves was reported for plants propagated on MS medium enriched with 0.5 mg∙dm-3 BAP. The greatest number of the longest roots was developed by stevia on the MS medium enriched with 1 mg∙dm-3 IAA.


Sign in / Sign up

Export Citation Format

Share Document