scholarly journals Bovine serum albumin protected gold nanozymes as a novel anti-cancer nanodrug for acute T-type lymphoblastic leukemia treatment via effect on the expression of anti-apoptotic genes

2021 ◽  
Vol 64 (1) ◽  
Author(s):  
Ehsan Vafa ◽  
Reza Bazargan-Lari

AbstractIn this paper, the bovine serum albumin protected gold nanozymes (BSA-Au nanozymes) were utilized as a novel nanodrug for treatment of acute T-type lymphoblastic leukemia (Jurkat) by production of excessive ROS and effect on the expression of anti-apoptotic genes. The effect of BSA-Au nanozymes on the Bcl-2 expression and survivin in the Jurkat cell line was checked. The results showed that the expression of anti-apoptotic genes was significantly reduced after treatment of the Jurkat cell line with the BSA-Au nanozymes (p-value of 0.001) as the potential nanodrug while their expression in the normal PBMC was not affected by the nanodrug. Moreover, the cytotoxic effect of the developed nanodrug on the Jurkat cell line was evaluated which illustrated that survival rate in the studied cell line reaches its minimum value (100% lethality, 0.0% survival) after treatment for 48 h. The IC50 for the nanodrug was calculated at 0.05 mM of the developed nanodrug. Overall, the BSA-Au nanozymes can be used as the nanodrug for treatment of T-type lymphoblastic leukemia via reducing the expression of anti-apoptotic genes, increasing the effect of common anticancer drugs such as Adriamycin and ara-C, and consequently increasing the survival of patients with leukemia.

2021 ◽  
Author(s):  
Tahmineh Atloo ◽  
Ramin Mohammadkhani ◽  
Ali Mohammadi ◽  
Kasra Arbabi Zaboli ◽  
Saeed Kaboli ◽  
...  

Abstract In this work, first, copper oxide nanoparticles (CUO NPs) were synthesized by physical methods and then coated with the bovine serum albumin (BSA) via biologically meditated minerals to form CUO@BSA NPs. Finally, curcumin (CUR) as an anticancer drug were immobilized on the surface of CUO@BSA NPS. The properties of CUO@BSA-CUR NPS were investigated by FTIR, UV-Vis, TEM, and AFM spectroscopes. It was found that the synthesized CUO@BSA-CUR nanoparticles were spherical with a particle size of 20 to 30 nm and have a sustained release of CUR at 37°C in buffer solution. Also, the result of release in biological environment showed that maximum drug release rate for this nanocarrier in pH 7.4 was measured 75% after 48 hours. The cytotoxicity of CUO@BSA-CUR on MDA-MB-231 cell line was studied. The results showed that CUO@BSA-CUR nanoparticles have significant cytotoxic activity on this cell line, while the results of MTT assay indicated the CUO@BSA NPs have no toxicity effect on the cancer cells.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3240-3240 ◽  
Author(s):  
Gustavo Loureiro ◽  
Daniella Bahia Kerbauy ◽  
Maria de Lourdes ◽  
L. F. Chauffaille ◽  
Maria Lucia M. Lee ◽  
...  

Abstract Abstract 3240 Introduction: Treatment of adult acute lymphoblastic leukemia (ALL) has shown only modest improvements over the last 2 decades, with overall survival of 15% to 40%. The mitogen-activated protein kinase (MAPK) signaling cascade and the phosphoinosytol-3 phosphate/AKT (PI3K/AKT) pathways are involved in proliferation and differentiation of hematopoietic cells. It has been reported that those pathways are frequently activated in solid tumors and acute myeloid leukemia. However, their role in adult ALL is still uncertain. Better understanding of such pathways is necessary for development of novel therapeutic strategies. Aims: To evaluate the phopho-ERK and phospho-AKT protein expression in ALL at diagnosis and to correlate with biological and clinical parameters. Material and Methods: Twenty eight patients (median age 33y, 14–69y) with ALL at diagnosis were studied. Bone marrow and/or peripheral blood mononuclear cells (PBMC) (10 fresh and 18 cryopreserved cells at diagnosis) were stained using phospho-ERK and phospho-AKT/alexafluor 488 monoclonal antibodies (Cell Signaling Technology, Beverly, MA) and their expression was evaluated by flow cytometry (FACScalibur cytometer and CELL Quest program - BDB, San Jose, CA). The monoclonal antibodies CD19, CD10, CD3, CD45, IgM, CD34, CD7, CD2 were used for leukemic cells characterization by four-colour staining. Healthy donor PBMC and Jurkat cell line were used as controls: normal T lymphocytes are negative for p-ERK and Jurkat cell line express p-ERK and p-AKT in low levels. Samples were analyzed for constitutive expression of p-ERK and p-AKT and also after cell activation by phorbol-myristate-acetate (PMA). The expression of these proteins was evaluated by Kolmogorov-Smirnov test using fluorescence ratio between control isotype and phospho-protein (D). p-ERK and p-AKT expression was also evaluated in fresh and frozen samples of the same patients (2 cases) and similar results were obtained. In addition, patients were evaluated for multidrug resistance (MDR) through p-glycoprotein (PGP) expression and Rhodamine (Rh) efflux test and minimal residual disease (MRD) detection at the end of induction by flow cytometry. Results: Twenty cases were B-ALL (EGIL B-I 3, B-II 9, B-III 8, B-IV 5) and 3 T-ALL. Median WBC count was 25.3×109/L (2.3-373×109/L). The expression of p-ERK and p-AKT varied and the median value of p-ERK expression was D = 0.16 (0.01-0.80) and p-AKT median D = 0.08 (0.00-0.63). Considering these values as cutoff there was no difference regarding the patients` age and WBC count at the diagnosis between the positive and negative groups. In regards to EGIL subtypes, p-ERK expression was higher in T-ALL [median 0.50 (0.18-0.54)] than in B-precursor ALL [median 0.14 (0.01-0.80)] (p=0.03). Conversely p-AKT expression was similar in all cases, although high levels were observed among BIII cases. The frequency of Rh efflux was 88% in pERK negative cases and 66% in positive group but there was no difference on PGP expression. On the contrary, PGP expression and Rh efflux were more frequently seen in p-AKT positive cases (88% and 100%, respectively) than p-AKT negative ones (63% and 60%). MRD analysis was performed in seven patients. Two cases presented detectable MRD (>0.01%) and both were p-ERK positive and p-AKT negative. Interestingly all five MRD (-) cases were p-ERK negative and p-AKT positive. In addition, PMA test showed p-ERK activation of normal T lymphocytes and the expression was increased in 52% of ALL cases upon treatment. Conclusion: MAPK and PI3/AKT activation varied among ALL patients. MAPK pathway showed to be more activated in T-ALL than in precursor-B ALL. The functional analysis of these pathways can address the role in ALL pathogenesis. Both pathways may be potential therapeutic targets for novel therapies. (Support: FAPESP proc.09/51002-8). Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Sangilimuthu Alagar Yadav ◽  
Lukmanul Hakkim Faruck ◽  
Rajagopal Subramanium ◽  
Lakshmi K. Surendren ◽  
Hamid Bakshi

Abstract Background Natural products play a key role in treating different ailment including diabetes, asthma, skin diseases, and cancer. It is well known that synthetic drugs elicit significant toxicity when used in the clinic. A higher drug affinity towards carrier protein Bovine Serum Albumin (BSA) would enhance a higher drug bioavailability which in turn leads to a higher therapeutic efficacy. The focus of the present study was to investigate antioxidant and anti-cancer potential of 5-hyrdoxy1-methylpiperidin-2-one (5-HMP) isolated from leaves of Tragia involucrata. Methods and material In vitro free radical scavenging assays and MTT assay were employed to assess the antioxidant activity of 5-HMP and cytotoxicity of 5-HMP on lung cancer cell line, A549, respectively. In addition, attempts were made to investigate 5-HMP binding capacity on BSA by spectral studies and molecular docking. Results The antioxidant data revealed that 5-HMP inhibited the radicals with an IC50 value of 49.55 ± 0.75 μg/ml which was comparable with the IC50 values afforded by l-ascorbic acid. 5-HMP exhibited a dose-dependent cytotoxicity on A549 cells with an IC50 value of 30.00 ± 0.55 μg/ml. further 5-HMP induced a cell cycle arrest in A549 at S and G2/M phase. The fluorescence quenching was observed when an increasing concentration of 5-HMP, reacts with a fixed concentration of BSA (1.0 μM). The fluorescence quenching of BSA by 5-HMP indicated a binding constant of K5-HMP = 2.8 ± 1.4 × 104M−1 with corresponding binding free energy (ΔG)−6.06 K.cal/mole. Conclusions This paper concluded that 5-HMP possesses antioxidant properties, cytotoxic effects and also it possesses good drug binding properties on bovine serum albumin.


2015 ◽  
Vol 9 (3) ◽  
pp. 1359-1363 ◽  
Author(s):  
LIYUAN GUO ◽  
YAN PENG ◽  
YULIAN LI ◽  
JINGPING YAO ◽  
GUANGMEI ZHANG ◽  
...  

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 18-19
Author(s):  
Scott Howard ◽  
Ansu Kumar ◽  
Anusha Pampana ◽  
Yashaswini S Ullal ◽  
Anuj Tyagi ◽  
...  

Background:Early T-cell Precursor Acute Lymphoblastic Leukemia (ETP-ALL), an orphan disease, is a sub-type of T-Cell Acute Lymphoblastic Leukemia (T-ALL) with very poor prognosis and limited therapy options. ETP-ALL is a heterogeneous disease with many distinct genomic profiles, often with more myeloid than lymphoid characteristics. However, standard of care (SOC) drugs for acute myeloid leukemia (AML) have shown limited efficacy for ETP-ALL (PMID: 32733662, 25435716). The genomic profiles of ETP-ALL patients have more complex cytogenetics and larger numbers of genomic aberrations when compared to non-ETP-ALL (T-ALL) profiles (PMID: 22237106, 30641417). We present an alternative multi-gene analysis approach using the Cellworks Omics Biology Model (CBM) workflow to identify unique, intersecting protein pathways in patient-specific disease profiles. The CBM predictive workflow was used to design novel personalized therapy options for an ETP-ALL representative PEER human lymphoid cell line in comparison to a T-ALL JURKAT cell line. The predicted combination therapies were then validated in a lab model. Methods:A PEER cell line was selected to represent ETP-ALL and a JURKAT cell line was selected as a representative for non-ETP T-ALL. Next Generation Sequencing (NGS) was performed for the PEER cell line. For the JURKAT cell line, publicly available NGS whole exome sequencing from cBioPortal and Sanger, along with array CGH from Agilent, were used. The genomic data for the PEER and JURKAT cell lines were used as inputs to the CBM to generate dynamic patient-specific disease protein network maps. Biomarkers and pathway characteristics unique to the PEER and JURKAT cell lines were identified. A digital drug library of targeted FDA-approved agents was simulated on the disease models using both single drug agents and drug combinations at varying doses. The treatment impact was assessed by quantitatively measuring drug effect on a cell growth score, which is a composite of the quantified values of cell proliferation, survival and apoptosis along with impact on the patient-specific disease biomarker score. Comparative dose response studies were run to assess IC50 differences for both cell lines. Cellworks VenturaTM predicted novel therapy combinations for the ETP-ALL representative PEER cell line, which were then prospectively validated by in vitro experiments. The same therapy options were predicted to be less effective in the T-ALL representative JURKAT cell line, which was also confirmed by in vitro studies. Results:The CBM predicted three novel combination therapies for the ETP-ALL representative PEER cell line: nilotinib + cytarabine, bortezomib + cytarabine and bortezomib + idarubicin. All three therapies were predicted to be less effective in JURKAT cells. In vitro, PEER cells were sensitive to all 3 combinations, as predicted by the CBM; whereas, JURKAT cell lines were not sensitive to the first 2 combinations (as predicted), but were sensitive to bortezomib + idarubicin. The CBM analysis is supported by scientific rationales for these combinations based on the genomics-driven disease characteristics of the cell-line. The reasons for drug sensitivity and resistance were determined. These combinations were then prospectively validated in vitro on both cell lines and the experimental responses matched the predicted outcomes. Conclusion:The Cellworks Omics Biology Model integrates the multiple genomic abnormalities in a patient to identify disease network characteristics unlike other NGS analytic tools that attempt to interpret the impact of each genomic alteration in isolation. CBM identified 3 novel therapy options for ETP-ALL that were validated in vitro, similar to anecdotal experience in vivo. This predictive technology can improve clinical decision-making and identify novel treatment options. Disclosures Howard: Cellworks:Consultancy;Servier:Consultancy, Other: Speaker;EUSA Pharma:Consultancy;Sanofi:Consultancy, Other: Speaker;Boston Scientific:Consultancy.Kumar:Cellworks Research India Private Limited:Current Employment.Pampana:Cellworks Research India Private Limited:Current Employment.Ullal:Cellworks Research India Private Limited:Current Employment.Tyagi:Cellworks Research India Private Limited:Current Employment.Lala:Cellworks Research India Private Limited:Current Employment.Kumari:Cellworks Research India Private Limited:Current Employment.Joseph:Cellworks Research India Private Limited:Current Employment.Raju:Cellworks Research India Private Limited:Current Employment.Balakrishnan:Cellworks Research India Private Limited:Current Employment.Mundkur:Cellworks Group Inc.:Current Employment.Macpherson:Cellworks Group Inc.:Current Employment.Nair:Cellworks Research India Private Limited:Current Employment.Kapoor:Cellworks Research India Private Limited:Current Employment.


Author(s):  
G. D. Gagne ◽  
M. F. Miller

We recently described an artificial substrate system which could be used to optimize labeling parameters in EM immunocytochemistry (ICC). The system utilizes blocks of glutaraldehyde polymerized bovine serum albumin (BSA) into which an antigen is incorporated by a soaking procedure. The resulting antigen impregnated blocks can then be fixed and embedded as if they are pieces of tissue and the effects of fixation, embedding and other parameters on the ability of incorporated antigen to be immunocyto-chemically labeled can then be assessed. In developing this system further, we discovered that the BSA substrate can also be dried and then sectioned for immunolabeling with or without prior chemical fixation and without exposing the antigen to embedding reagents. The effects of fixation and embedding protocols can thus be evaluated separately.


Sign in / Sign up

Export Citation Format

Share Document