scholarly journals Genetic parameters of drinking and feeding traits of wean-to-finish pigs under a polymicrobial natural disease challenge

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jian Cheng ◽  
Austin M. Putz ◽  
John C. S. Harding ◽  
Michael K. Dyck ◽  
Frederic Fortin ◽  
...  

Abstract Background The pork industry faces unprecedented challenges from disease, which increases cost of production and use of antibiotics, and reduces production efficiency, carcass quality, and animal wellbeing. One solution is to improve the overall resilience of pigs to a broad array of common diseases through genetic selection. Behavioral changes in feeding and drinking are usually the very first clinical signs when animals are exposed to stressors such as disease. Changes in feeding and drinking behaviors in diseased pigs may reflect the way they cope with the challenge and, thus, could be used as indicator traits to select for disease resilience. The objectives of this study were to estimate genetic parameters of feeding and drinking traits for wean-to-finish pigs in a natural polymicrobial disease challenge model, to estimate genetic correlations of feeding and drinking traits with growth rate and clinical disease traits, and to develop indicator traits to select for disease resilience. Results In general, drinking traits had moderate to high estimates of heritability, especially average daily water dispensed, duration, and number of visits (0.44 to 0.58). Similar estimates were observed for corresponding feeding traits (0.35 to 0.51). Most genetic correlation estimates among drinking traits were moderate to high (0.30 to 0.92) and higher than among feeding traits (0 to 0.11). Compared to other drinking traits, water intake duration and number of visits had relatively stronger negative genetic correlation estimates with treatment rate and mortality, especially across the challenge nursery and finisher (− 0.39 and − 0.45 for treatment rate; − 0.20 and − 0.19 for mortality). Conclusion Most of the recorded drinking and feeding traits under a severe disease challenge had moderate to high estimates of heritability, especially for feed or water intake duration and number of visits. Phenotypic and genetic correlations among the recorded feeding traits under disease were generally low but drinking traits showed high correlations with each other. Water intake duration and number of visits are potential indicator traits to select for disease resilience because of their high heritability and had moderate genetic correlations with treatment and mortality rates under severe disease.

2021 ◽  
Author(s):  
Jian Cheng ◽  
Austin M. Putz ◽  
John C. S. Harding ◽  
Michael K. Dyck ◽  
Frederic Fortin ◽  
...  

Abstract BackgroundThe pork industry faces unprecedented challenges from disease, which increases cost of production and use of antibiotics, and reduces production efficiency, carcass quality, and animal wellbeing. One solution is to improve the overall resilience of pigs to a broad array of common diseases through genetic selection. Behavioral changes in eating and drinking are usually the very first clinical signs when animals are exposed to stressors such as disease. Changes in feed and water intake behaviors in diseased pigs may reflect the way they cope with the challenge and, thus, could be used as indicator traits to selection of disease resilience. The objectives of this study were to estimate genetic parameters of feed and water intake and behavior traits for wean-to-finish pigs in a natural polymicrobial disease challenge model, estimate genetic correlations of feed and water intake and behavior traits with growth rate and clinical disease traits, and to develop indicator traits for selection of disease resilience.ResultsIn general, water intake traits had moderate to high estimates of heritability, especially for average daily water dispensed, duration, and number of visits (0.44 to 0.58). Similar estimates were observed for corresponding feed intake traits (0.35 to 0.51). Most genetic correlation estimates among drinking traits were moderate to high (0.30 to 0.92) and higher than among feeding traits (0 to 0.11). Compared to other water intake traits, water intake duration and number of visits had relatively stronger negative genetic correlation estimates with treatment rate and mortality, especially across the challenge nursery and finisher (-0.39 and -0.45 for treatment rate; -0.20 and -0.19 for mortality). ConclusionMost water and feed intake traits under severe disease challenge had moderate to high estimates of heritability, especially for feed or water intake duration and number of visits. Phenotypic and genetic correlations among feed intake traits under disease were generally low but water intake traits showed high correlations with each other. Water intake duration and number of visits are potential indicator traits to select for disease resilience because of their high heritability and had moderate genetic correlations with treatment and mortality rates under severe disease.


Genetics ◽  
1996 ◽  
Vol 143 (3) ◽  
pp. 1409-1416 ◽  
Author(s):  
Kenneth R Koots ◽  
John P Gibson

Abstract A data set of 1572 heritability estimates and 1015 pairs of genetic and phenotypic correlation estimates, constructed from a survey of published beef cattle genetic parameter estimates, provided a rare opportunity to study realized sampling variances of genetic parameter estimates. The distribution of both heritability estimates and genetic correlation estimates, when plotted against estimated accuracy, was consistent with random error variance being some three times the sampling variance predicted from standard formulae. This result was consistent with the observation that the variance of estimates of heritabilities and genetic correlations between populations were about four times the predicted sampling variance, suggesting few real differences in genetic parameters between populations. Except where there was a strong biological or statistical expectation of a difference, there was little evidence for differences between genetic and phenotypic correlations for most trait combinations or for differences in genetic correlations between populations. These results suggest that, even for controlled populations, estimating genetic parameters specific to a given population is less useful than commonly believed. A serendipitous discovery was that, in the standard formula for theoretical standard error of a genetic correlation estimate, the heritabilities refer to the estimated values and not, as seems generally assumed, the true population values.


1982 ◽  
Vol 62 (3) ◽  
pp. 665-670 ◽  
Author(s):  
D. C. JEFFRIES ◽  
R. G. PETERSON

Genetic parameters were estimated for 2403 purebred Yorkshire pigs over a 2-yr period, representing 21 sires. The traits studied included average daily gain, age adjusted to 90 kg, ultrasonic measurements of backfat at the mid-back and loin positions, total and adjusted total ultrasonic backfat and corresponding carcass backfat measurements. Least squares analyses were used to estimate and adjust for the effects of sex, year-season and sex by year-season interaction. Heritabilities and genetic correlations were calculated for all traits using both half- and full-sib estimates. Adjusted age and adjusted total ultrasonic backfat measurements were found to have the highest heritabilities of the live traits in this study. Estimates of heritability for adjusted age and adjusted total ultrasonic backfat were 0.24 ± 0.10 and 0.26 ± 0.10 based on half-sib and 0.56 ± 0.07 and 0.41 ± 0.06 from full-sib analyses. The genetic correlation between these two traits was −0.07 ± 0.28 based on the half-sib method. The total phenotypic correlation was −0.01 ± 0.02. Key words: Swine, ultrasonic backfat, heritabilities, genetic correlations


2000 ◽  
Vol 43 (3) ◽  
pp. 287-298
Author(s):  
J. Bizelis ◽  
A. Kominakis ◽  
E. Rogdakis ◽  
F. Georgadopoulou

Abstract. Production and reproduetive traits in Danish Landrace (LD) and Large White (LW) swine were analysed by restricted maximum likelihood methods to obtain heritabilities as well as genetic and phenotypic correlations. Production traits were: age, backfat thickness (BT), muscle depth (MD) and the ratio BT/MD, adjusted to Standard bodyweight of 85 kg. Reproduction traits were: number of pigs born (NB) and number of pigs weaned (NW) per sow and parity. Heritabilities for age, BT, MD and BT/MD were 0.60, 0.44, 0.51 and 0.42 for LD and 0.36, 0.44, 0.37 and 0.45 for LW, respectively. Genetic correlations between age and BT were −0.22 in LD and – 0.44 in LW. The genetic correlation between age and MD was close to zero in both breeds. Genetic correlation between BT and MD were −0.36 and −0.25 in LD and LW, respectively. Heritabilities for NB were 0.25 in LD and 0.13 in LW while heritabilities for NW were close to zero in both breeds. Genetic correlation between NB and NW was 0.46 and 0.70 in LD and LW, respectively.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 347-347
Author(s):  
Pourya Davoudi ◽  
Duy Ngoc Do ◽  
Guoyu Hu ◽  
Siavash Salek Ardestani ◽  
Younes Miar

Abstract Feed cost is the major input cost in the mink industry and thus improvement of feed efficiency through selection for high feed efficient mink is necessary for the mink farmers. The objective of this study was to estimate the heritability, phenotypic and genetic correlations for different feed efficiency measures, including final body weight (FBW), daily feed intake (DFI), average daily gain (ADG), feed conversion ratio (FCR) and residual feed intake (RFI). For this purpose, 1,088 American mink from the Canadian Center for Fur Animal Research at Dalhousie Faculty of Agriculture were recorded for daily feed intake and body weight from August 1 to November 14 in 2018 and 2019. The univariate models were used to test the significance of sex, birth year and color as fixed effects, and dam as a random effect. Genetic parameters were estimated via bivariate models using ASReml-R version 4. Estimates of heritabilities (±SE) were 0.41±0.10, 0.37±0.11, 0.33±0.14, 0.24±0.09 and 0.22±0.09 for FBW, DFI, ADG, FCR and RFI, respectively. The genetic correlation (±SE) was moderate to high between FCR and RFI (0.68±0.15) and between FCR and ADG (-0.86±0.06). In addition, RFI had low non-significant (P > 0.05) genetic correlations with ADG (0.04 ± 0.26) and BW (0.16 ± 0.24) but significant (P < 0.05) high genetic correlation with DFI (0.74 ± 0.11) indicating that selection for lower RFI will reduce feed intake without adverse effects on the animal size and growth rate. The results suggested that RFI can be implemented in genetic/genomic selection programs to reduce feed intake in the mink production system.


Author(s):  
K Devani ◽  
J J Crowley ◽  
G Plastow ◽  
K Orsel ◽  
T S Valente

Abstract Poor teat and udder structure, frequently associated with older cows, impact cow production and health, as well as calf morbidity and mortality. However, producer culling, for reasons including age, production, feed availability, and beef markets, creates a bias in teat and udder scores assessed and submitted to the Canadian Angus Association for genetic evaluations towards improved mammary structure. In addition, due to the infancy of the reporting program, repeated scores are rare. Prior to adoption of genetic evaluations for teat and udder scores in Canadian Angus cattle, it is imperative to verify that teat and udder scores from young cows are the same trait as teat and udder scores estimated on mature cows. Genetic parameters for teat and udder scores from all cows (n=4,192), and then from young cows (parity 1 and 2) and from mature cows (parity ≥ 4) were estimated using a single trait animal model. Genetic correlations for the traits between the two cow age groups were estimated using a two-trait animal model. Estimates of heritability (PSD) were 0.32 (0.07) and 0.45 (0.07) for young teat and udder score, and 0.27 (0.07) and 0.31 (0.07) for mature teat and udder score, respectively. Genetic correlation (PSD) between the young and mature traits was 0.87 (0.13) for teat score and 0.40 (0.17) for udder score. GWAS were used to further explore the genetic and biological commonalities and differences between the two groups. Although there were no genes in common for the two udder scores, 12 genes overlapped for teat score in the two cow age groups. Interestingly, there were also 23 genes in common between teat and udder scores in mature cows. Based on these findings, it is recommended that producers collect teat and udder score on their cow herd annually.


1983 ◽  
Vol 34 (1) ◽  
pp. 85 ◽  
Author(s):  
BH Yoo ◽  
BL Sheldon ◽  
RN Podger

An exponential curve, W = P-Qexp(- Rt), where W is egg weight at age t, was fitted to egg weights of individual pullets, and genetic parameters were estimated for P, Q and R, the residual standard deviation and other egg weight and egg production characters. The data consisted of records collected over six generations on more than 4000 pullets in two selection lines and a control line which originated from a synthetic gene pool of White Leghorn x Australorp crosses. The half-sib and offspring-on-parent regression estimates of heritability pooled over the lines were 0.23 and 0.33 for P, 0.14 and 0.20 for Q, and 0.14 and 0.25 for R. Genetic correlations were estimated to be -0.10 between P and Q, -0.46 between P and R, and 0.90 between Q and R. These estimates suggest that the egg weight v. age curve may be modified to increase the proportion of eggs in desirable weight grades and reduce the incidence of oversized eggs later in the production year. The genetic correlation between mean weight of first 10 eggs and egg weight at 62 weeks of age was estimated to be 0.68, further suggesting that early egg weight may be improved partly independently of late egg weight. The heritability estimates of egg mass output were not higher than those of egg number in spite of the highly heritable average egg weight being an important component of egg mass, probably because of the negative genetic correlation (r = -0.49) between egg number and average egg weight. The standard deviation of individual pullet's egg weights was moderately heritable and genetically correlated positively with egg weight characters and negatively with egg production; these estimates were consistent with the responses to selection for reduced egg weight variability observed elsewhere


2018 ◽  
Vol 58 (2) ◽  
pp. 234 ◽  
Author(s):  
Carolyn Aboujaoude ◽  
Angélica Simone Cravo Pereira ◽  
Fabieli Louise Braga Feitosa ◽  
Marcos Vinicius Antunes de Lemos ◽  
Hermenegildo Lucas Justino Chiaia ◽  
...  

The aim of the present study was to estimate covariance components and genetic parameters for beef fatty acid (FA) composition of intramuscular fat in the longissimus thoracis muscle in Nelore bulls finished in feedlot. Twenty-two FAs were selected. The heritability estimates for individual FAs ranged from 0.01 to 0.35. The heritability estimates for myristic (0.25 ± 0.09), palmitic (0.18 ± 0.07), oleic (0.28 ± 0.09), linoleic (0.16 ± 0.06) and α-linolenic (0.35 ± 0.10) FAs were moderate. Stearic, elaidic, palmitoleic, vaccenic, conjugated linoleic acid, docosahexanoic, eicosatrienoic and arachidonic FAs had heritability estimates below 0.15. The genetic-correlation estimates between the individual saturated FAs (SFAs) were low and negative between myristic and stearic FAs (–0.22 ± 0.84), moderate between palmitic and myristic FAs (0.58 ± 0.56) and negative between palmitic and stearic FAs (–0.69 ± 0.45). The genetic correlations between the individual long-chain polyunsaturated FAs (PUFAs) were positive and moderate (>0.30). However, the genetic-correlation estimates between long-chain PUFAs and α-linolenic acid were low (<0.30), except for the correlation between arachidonic and α-linolenic acids. The genetic correlation estimates of the sums of SFAs with monounsaturated fatty acids and omega 6 FAs were low (0.25 ± 0.59 and –0.02 ± 0.51 respectively), high with PUFAs and omega 9 FAs (–0.85 ± 0.15 and 0.86 ± 0.17 respectively) and moderate with omega 3FAs (–0.67 ± 0.26). The present study demonstrated the existence of genetic variation and, hence, the possibility to increase the proportion of healthy and favourable beef FAs through selection. The results obtained in the study have provided knowledge to elucidate the additive genetic influence on FA composition of intramuscular fat. In addition, genetic-relationship estimates of intramuscular FA profile help seek strategies for genetic selection or genetic-based diet management to enhance the FA profile in Zebu cattle.


Genetics ◽  
1973 ◽  
Vol 75 (4) ◽  
pp. 709-726
Author(s):  
J J Rutledge ◽  
E J Eisen ◽  
J E Legates

ABSTRACT Heritability and genetic correlations realized from both single-trait and antagonistic index selection were compared with paternal half-sib estimates. Primary attention was focused on the genetic correlation between six-week body weight and six-week tail length. Parameters realized from single-trait selection were in excellent agreement with paternal half-sib estimates. However, the realized genetic correlation between six-week body weight and six-week tail length obtained from index selection was significantly greater than the other estimates. Differential inbreeding levels and realized selection intensities were considered and rejected as being causative factors for these results. Linkage disequilibrium probably was not a factor either, as the base population had been randomly mated and randomly selected with a large effective population size for many generations. It was concluded that with antagonistic index selection, the pleiotropic effects of genes may be more powerful in retarding response in aggregate genotype than current theory would suggest. Replication of all selected and control lines allowed the use of between-line estimators of sampling variances of realized genetic parameters in the above comparisons. Generally, standard errors of realized genetic parameters were much smaller than corresponding paternal half-sib standard errors. Thus, selection was an efficient method of estimation.


2019 ◽  
Vol 59 (10) ◽  
pp. 1777
Author(s):  
J. C. Greeff ◽  
L. J. E. Karlsson ◽  
A. C. Schlink

Breech strike is caused by the infestation of maggots from Lucilia cuprina on the skin of susceptible sheep. Crutching and mulesing modify the potential expression of breech strike, because crutched and mulesed sheep have a lower risk of being struck than uncrutched sheep. The inheritance of and genetic correlations among breech strike from birth to hogget shearing, and dags (breech soiling) and skin wrinkles scored at yearling age were estimated in unmulesed and crutched, unmulesed and uncrutched, and in mulesed and uncrutched Merino sheep to determine whether these traits were genetically the same under these three husbandry systems. The heritability estimates of breech strike in uncrutched, crutched and mulesed sheep were very similar (0.11 ± 0.02, 0.09 ± 0.02 and 0.08 ± 0.05 respectively). Breech strike in uncrutched sheep is genetically strongly correlated with breech strike in crutched sheep (0.80 ± 0.16). The genetic correlation between breech strike in uncrutched and in mulesed sheep was high (0.98 ± 0.40), but the high standard error makes this estimate unreliable. Dags and wrinkles are genetically moderately to strongly correlated with breech strike, which confirms that they are indicator traits for breech strike. Dags in uncrutched sheep was genetically strongly correlated with dags in mulesed sheep (0.84 ± 0.11). Breech wrinkle in uncrutched and crutched sheep, and tail wrinkle in mulesed sheep were not genetically strongly correlated with each other, as the correlations varied between zero and 0.48 (±0.18). The key outcome from this study indicates that all breech strike, wrinkle and dag data in mulesed, crutched or uncrutched flocks may be used in future to estimate a breeding value directly for breech strike.


Sign in / Sign up

Export Citation Format

Share Document