scholarly journals Untangling the origin and function of granulovacuolar degeneration bodies in neurodegenerative proteinopathies

2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Vera I. Wiersma ◽  
Jeroen J. M. Hoozemans ◽  
Wiep Scheper

Abstract In the brains of tauopathy patients, tau pathology coincides with the presence of granulovacuolar degeneration bodies (GVBs) both at the regional and cellular level. Recently, it was shown that intracellular tau pathology causes GVB formation in experimental models thus explaining the strong correlation between these neuropathological hallmarks in the human brain. These novel models of GVB formation provide opportunities for future research into GVB biology, but also urge reevaluation of previous post-mortem observations. Here, we review neuropathological data on GVBs in tauopathies and other neurodegenerative proteinopathies. We discuss the possibility that intracellular aggregates composed of proteins other than tau are also able to induce GVB formation. Furthermore, the potential mechanisms of GVB formation and the downstream functional implications hereof are outlined in view of the current available data. In addition, we provide guidelines for the identification of GVBs in tissue and cell models that will help to facilitate and streamline research towards the elucidation of the role of these enigmatic and understudied structures in neurodegeneration.

2021 ◽  
pp. 1-18
Author(s):  
Jacob A. Miller ◽  
Mark D'Esposito ◽  
Kevin S. Weiner

Stuss considered the human prefrontal cortex (pFC) as a “cognitive globe” [Stuss, D. T., & Benson, D. F. Neuropsychological studies of the frontal lobes. Psychological Bulletin, 95, 3–28, 1984] on which functions of the frontal lobe could be mapped. Here, we discuss classic and recent findings regarding the evolution, development, function, and cognitive role of shallow indentations or tertiary sulci in pFC, with the goal of using tertiary sulci to map the “cognitive globe” of pFC. First, we discuss lateral pFC (LPFC) tertiary sulci in classical anatomy and modern neuroimaging, as well as their development, with a focus on those within the middle frontal gyrus. Second, we discuss tertiary sulci in comparative neuroanatomy, focusing on primates. Third, we summarize recent findings showing the utility of tertiary sulci for understanding structural–functional relationships with functional network insights in ventromedial pFC and LPFC. Fourth, we revisit and update unresolved theoretical perspectives considered by C. Vogt and O. Vogt (Allgemeinere ergebnisse unserer hirnforschung. Journal für Psychologie und Neurologie, 25, 279–462, 1919) and F. Sanides (Structure and function of the human frontal lobe. Neuropsychologia, 2, 209–219, 1964) that tertiary sulci serve as landmarks for cortical gradients. Together, the consideration of these classic and recent findings indicate that tertiary sulci are situated in a unique position within the complexity of the “cognitive globe” of pFC: They are the smallest and shallowest of sulci in pFC, yet can offer insights that bridge spatial scales (microns to networks), modalities (functional connectivity to behavior), and species. As such, the map of tertiary sulci within each individual participant serves as a coordinate system specific to that individual on which functions may be further mapped. We conclude with new theoretical and methodological questions that, if answered in future research, will likely lead to mechanistic insight regarding the structure and function of human LPFC.


2002 ◽  
Vol 175 (1) ◽  
pp. 75-88 ◽  
Author(s):  
F Gonzalez-Fernandez

The trafficking of retinoids in the retina represents a model to study soluble hormone-binding proteins in a complex system subject to profound evolutionary adaptations. Although a remarkable illustration of convergent evolution, all visual systems detect light in the same way, that is through the photoisomerization of an 11-cis retinoid to a corresponding trans isomer. What is strikingly different between the systems, is the mechanism by which the 11-cis chromophore is reformed and visual pigment regenerated in a process known as the visual cycle. The variations of the cycle address a problem inherent to retinoids themselves. That is, the properties that make these molecules suited for light detection also account for their susceptibility to oxidative and isomeric degradation, and cellular toxicity. The cycle therefore provides an opportunity to examine the role of soluble hormone-binding proteins within an integrative and evolutionary context. The present review focuses on interphotoreceptor retinoid-binding protein (IRBP), a controversial glycolipoprotein that recruits a protein fold common to Cterminal-processing proteases and the crotonase family. This unorthodox retinoid-binding protein is entrapped in the subretinal compartment of those eyes that translocate visual cycle retinoids between the photoreceptors and the retinal pigment epithelium. Recent studies suggest that we should look beyond a strictly carrier function if we are to appreciate the role of IRBP in the visual cycle. Here we draw lessons from other soluble hormone-binding proteins to anticipate avenues of future research likely to provide insight into the structure and function of IRBP in vision.


Author(s):  
Reagan R. Wetherill ◽  
Susan F. Tapert

This chapter focuses on adolescent brain development and associated functional implications. We focus on changes in brain tissue composition, fiber architecture and circuitry, and neurochemistry and discuss how these maturational processes affect adolescent brain functioning, sleep, cognition, and behaviors. Given the substantial developments that occur during adolescence, the effects of puberty and sex hormones on brain structure and function are reviewed, and literature on the effects of substance use on the adolescent brain are covered. The chapter reports on recent neuroimaging studies suggesting that atypical and/or asynchronous maturation patterns may contribute to adolescents’ proclivity for risk taking, heightened emotionality, and the emergence of psychopathology. Finally, future research opportunities are discussed.


2021 ◽  
Vol 11 ◽  
Author(s):  
Saboor Ahmad ◽  
Shahmshad Ahmed Khan ◽  
Khalid Ali Khan ◽  
Jianke Li

Hypopharyngeal glands (HGs) are the most important organ of hymenopterans which play critical roles for the insect physiology. In honey bees, HGs are paired structures located bilaterally in the head, in front of the brain between compound eyes. Each gland is composed of thousands of secretory units connecting to secretory duct in worker bees. To better understand the recent progress made in understanding the structure and function of these glands, we here review the ontogeny of HGs, and the factors affecting the morphology, physiology, and molecular basis of the functionality of the glands. We also review the morphogenesis of HGs in the pupal and adult stages, and the secretory role of the glands across the ages for the first time. Furthermore, recent transcriptome, proteome, and phosphoproteome analyses have elucidated the potential mechanisms driving the HGs development and functionality. This adds a comprehensive novel knowledge of the development and physiology of HGs in honey bees over time, which may be helpful for future research investigations.


2020 ◽  
Author(s):  
Jacob Miller ◽  
Mark D'Esposito ◽  
kevin weiner

Stuss (1984) considered the human prefrontal cortex (PFC) as a “cognitive globe” on which functions of the frontal lobe could be mapped. Here, we discuss classic and recent findings regarding the evolution, development, function, and cognitive role of shallow indentations, or tertiary sulci, in PFC with the goal of using tertiary sulci to map the “cognitive globe” of PFC. First, we discuss lateral PFC (LPFC) tertiary sulci in classical anatomy and modern neuroimaging, as well as their development, with a focus on those within the middle frontal gyrus (MFG). Second, we discuss tertiary sulci in comparative neuroanatomy, focusing on primates. Third, we summarize recent findings showing the utility of tertiary sulci for understanding structural-functional relationships with functional network insights in ventromedial and LPFC. Fourth, we revisit and update unresolved theoretical perspectives considered by Vogt and Vogt (1919) and Sanides (1964) that tertiary sulci serve as landmarks for cortical gradients. Together, the consideration of these classic and recent findings indicate that tertiary sulci are situated in a unique position within the complexity of the “cognitive globe” of PFC: they are the smallest and shallowest of sulci in PFC, yet can offer insights that bridge spatial scales (microns to networks), modalities (functional connectivity to behavior), and species. As such, the map of tertiary sulci within each individual participant serves as a coordinate system specific to that individual on which functions may be further mapped. We conclude with new theoretical and methodological questions that if answered in future research, will likely lead to mechanistic insight regarding the structure and function of human LPFC.


2019 ◽  
Vol 20 (23) ◽  
pp. 5824 ◽  
Author(s):  
Sailen Barik

The daily periodicity of the Earth’s rotation around the Sun, referred to as circadian (Latin “circa” = about, and “diem” = day), is also mirrored in the behavior and metabolism of living beings. The discovery that dedicated cellular genes control various aspects of this periodicity has led to studies of the molecular mechanism of the circadian response at the cellular level. It is now established that the circadian genes impact on a large network of hormonal, metabolic, and immunological pathways, affecting multiple aspects of biology. Recent studies have extended the role of the circadian system to the regulation of infection, host–pathogen interaction, and the resultant disease outcome. This critical review summarizes our current knowledge of circadian-pathogen interaction at both systemic and cellular levels, but with emphasis on the molecular aspects of the regulation. Wherever applicable, the potential of a direct interaction between circadian factors and pathogenic macromolecules is also explored. Finally, this review offers new directions and guidelines for future research in this area, which should facilitate progress.


2020 ◽  
pp. 088626052095864
Author(s):  
Neil Shortland ◽  
Elias Nader ◽  
Lisa Thompson ◽  
Marek Palasinski

Scholars have extensively discussed the topic of “online radicalization,” often seeking to understand the form and function of online extremist material. However, this work has neglected to examine the role that the Internet plays alongside individual personality factors in the process through which someone develops violent extremist cognitions. This article aims to extend the understanding of the role of personality differences in the effect of exposure to extremist material online. In this study, we experimentally measure the short-term psychological consequences of exposure to extremist material on extremist cognitions. We use a between-group experimental design in which participants are shown extremist propaganda with either pre- or post-counter messages. Our results indicate that trait personality, and specifically aggression, may be more influential than exposure to extremist propaganda in influencing extremist cognitions. We discuss the implications of these results in the context of future research directions.


2019 ◽  
Vol 10 (6) ◽  
pp. 979-998 ◽  
Author(s):  
Riley L Hughes ◽  
Mary E Kable ◽  
Maria Marco ◽  
Nancy L Keim

ABSTRACT The gut microbiota is increasingly implicated in the health and metabolism of its human host. The host's diet is a major component influencing the composition and function of the gut microbiota, and mounting evidence suggests that the composition and function of the gut microbiota influence the host's metabolic response to diet. This effect of the gut microbiota on personalized dietary response is a growing focus of precision nutrition research and may inform the effort to tailor dietary advice to the individual. Because the gut microbiota has been shown to be malleable to some extent, it may also allow for therapeutic alterations of the gut microbiota in order to alter response to certain dietary components. This article is the second in a 2-part review of the current research in the field of precision nutrition incorporating the gut microbiota into studies investigating interindividual variability in response to diet. Part I reviews the methods used by researchers to design and carry out such studies as well as analyze the results subsequently obtained. Part II reviews the findings of these studies and discusses the gaps in our current knowledge and directions for future research. The studies reviewed provide the current understanding in this field of research and a foundation from which we may build, utilizing and expanding upon the methods and results they present to inform future studies.


2000 ◽  
Vol 279 (1) ◽  
pp. F3-F11 ◽  

This review, which is the final installment in a series devoted to controversial issues in acute renal failure (ARF) (3, 47), will examine available information regarding the role of growth factors in ARF. In general, studies in this area have fallen into two broad categories: 1) those that have examined the renal expression of genes encoding growth factors or transcriptional factors associated with the growth response that is induced after ARF, and 2) those that have examined the efficacy of exogenously administered growth factors in accelerating recovery of renal function in experimental models of ARF. Despite the vast amount of information that has accumulated in these two areas of investigation, our understanding of the mechanisms involved in the process of regeneration and repair after ARF, and the role of growth factors in this response, remains rudimentary. This overview, contributed to by a number of experts in the field, is designed to summarize present knowledge and to highlight potentially fertile areas for future research in this area.


2018 ◽  
Vol 19 (8) ◽  
pp. 2334 ◽  
Author(s):  
Sampada Kallol ◽  
Xiao Huang ◽  
Stefan Müller ◽  
Corneille Ontsouka ◽  
Christiane Albrecht

Cholesterol is indispensable for cellular membrane composition and function. It is also a precursor for the synthesis of steroid hormones, which promote, among others, the maturation of fetal organs. A role of the ATP-binding-cassette-transporter-A1 (ABCA1) in the transport of maternal cholesterol to the fetus was suggested by transferring cholesterol to apolipoprotein-A-1 (apo-A1), but the directionality of the apoA-1/ABCA1-dependent cholesterol transport remains unclear. We isolated primary trophoblasts from term placentae to test the hypotheses that (1) apoA-1/ABCA1 dispatches cholesterol mainly towards the fetus to support fetal developmental maturation at term, and (2) differentiated syncytiotrophoblasts (STB) exert higher cholesterol transport activity than undifferentiated cytotrophoblasts (CTB). As experimental models, we used (1) trophoblast monolayers grown on Transwell® system consisting of apical (maternal-like) and basal (fetal-like) compartments, and (2) trophoblasts grown on conventional culture plates at CTB and STB stages. Surprisingly, apoA-1-mediated cholesterol efflux operated almost exclusively at the apical-maternal side, where ABCA1 was also localized by immunofluorescence. We found greater cholesterol efflux capacity in STB, which was increased by liver-X-receptor agonist treatment and decreased by ABCA1 inhibition. We conclude that at term the apoA-1/ABCA1 pathway is rather involved in cholesterol transport to the mother than in transfer to the fully developed fetus.


Sign in / Sign up

Export Citation Format

Share Document