scholarly journals Performance evaluation of the particle swarm optimization algorithm to unambiguously estimate plasma parameters from incoherent scatter radar signals

2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Miguel Martínez-Ledesma ◽  
Francisco Jaramillo Montoya

Abstract Simultaneously estimating plasma parameters of the ionosphere presents a problem for the incoherent scatter radar (ISR) technique at altitudes between ~ 130 and ~ 300 km. Different mixtures of ion concentrations and temperatures generate almost identical backscattered signals, hindering the discrimination between plasma parameters. This temperature–ion composition ambiguity problem is commonly solved either by using models of ionospheric parameters or by the addition of parameters determined from the plasma line of the radar. Some studies demonstrated that it is also possible to unambiguously estimate ISR signals with very low signal fluctuation using the most frequently used non-linear least squares (NLLS) fitting algorithm. In a previous study, the unambiguous estimation performance of the particle swarm optimization (PSO) algorithm was evaluated, outperforming the standard NLLS algorithm fitting signals with very small fluctuations. Nevertheless, this study considered a confined search range of plasma parameters assuming a priori knowledge of the behavior of the ion composition and signals with very large SNR obtained at the Arecibo Observatory, which are not commonly feasible at other ISR facilities worldwide. In the present study, we conduct Monte Carlo simulations of PSO fittings to evaluate the performance of this algorithm at different signal fluctuation levels. We also determine the effect of adding different combinations of parameters known from the plasma line, different search ranges, and internal configurations of PSO parameters. Results suggest that similar performances are obtained by PSO and NLLS algorithms, but PSO has much larger computational requirements. The PSO algorithm obtains much lower convergences when no a priori information is provided. The a priori knowledge of Ne and $${T}_{e}/{T}_{i}$$ T e / T i parameters shows better convergences and “correct” estimations. Also, results demonstrate that the addition of $${N}_{e}$$ N e and $${T}_{e}$$ T e parameters provides the most information to solve the ambiguity problem using both optimization algorithms.

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2868
Author(s):  
Gong Cheng ◽  
Huangfu Wei

With the transition of the mobile communication networks, the network goal of the Internet of everything further promotes the development of the Internet of Things (IoT) and Wireless Sensor Networks (WSNs). Since the directional sensor has the performance advantage of long-term regional monitoring, how to realize coverage optimization of Directional Sensor Networks (DSNs) becomes more important. The coverage optimization of DSNs is usually solved for one of the variables such as sensor azimuth, sensing radius, and time schedule. To reduce the computational complexity, we propose an optimization coverage scheme with a boundary constraint of eliminating redundancy for DSNs. Combined with Particle Swarm Optimization (PSO) algorithm, a Virtual Angle Boundary-aware Particle Swarm Optimization (VAB-PSO) is designed to reduce the computational burden of optimization problems effectively. The VAB-PSO algorithm generates the boundary constraint position between the sensors according to the relationship among the angles of different sensors, thus obtaining the boundary of particle search and restricting the search space of the algorithm. Meanwhile, different particles search in complementary space to improve the overall efficiency. Experimental results show that the proposed algorithm with a boundary constraint can effectively improve the coverage and convergence speed of the algorithm.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Meisam Babanezhad ◽  
Iman Behroyan ◽  
Ali Taghvaie Nakhjiri ◽  
Azam Marjani ◽  
Mashallah Rezakazemi ◽  
...  

AbstractHerein, a reactor of bubble column type with non-equilibrium thermal condition between air and water is mechanistically modeled and simulated by the CFD technique. Moreover, the combination of the adaptive network (AN) trainer with the fuzzy inference system (FIS) as the artificial intelligence method calling ANFIS has already shown potential in the optimization of CFD approach. Although the artificial intelligence method of particle swarm optimization (PSO) algorithm based fuzzy inference system (PSOFIS) has a good background for optimizing the other fields of research, there are not any investigations on the cooperation of this method with the CFD. The PSOFIS can reduce all the difficulties and simplify the investigation by elimination of the additional CFD simulations. In fact, after achieving the best intelligence, all the predictions can be done by the PSOFIS instead of the massive computational efforts needed for CFD modeling. The first aim of this study is to develop the PSOFIS for use in the CFD approach application. The second one is to make a comparison between the PSOFIS and ANFIS for the accurate prediction of the CFD results. In the present study, the CFD data are learned by the PSOFIS for prediction of the water velocity inside the bubble column. The values of input numbers, swarm sizes, and inertia weights are investigated for the best intelligence. Once the best intelligence is achieved, there is no need to mesh refinement in the CFD domain. The mesh density can be increased, and the newer predictions can be done in an easier way by the PSOFIS with much less computational efforts. For a strong verification, the results of the PSOFIS in the prediction of the liquid velocity are compared with those of the ANFIS. It was shown that for the same fuzzy set parameters, the PSOFIS predictions are closer to the CFD in comparison with the ANFIS. The regression number (R) of the PSOFIS (0.98) was a little more than that of the ANFIS (0.97). The PSOFIS showed a powerful potential in mesh density increment from 9477 to 774,468 and accurate predictions for the new nodes independent of the CFD modeling.


2021 ◽  
pp. 1-17
Author(s):  
J. Shobana ◽  
M. Murali

Text Sentiment analysis is the process of predicting whether a segment of text has opinionated or objective content and analyzing the polarity of the text’s sentiment. Understanding the needs and behavior of the target customer plays a vital role in the success of the business so the sentiment analysis process would help the marketer to improve the quality of the product as well as a shopper to buy the correct product. Due to its automatic learning capability, deep learning is the current research interest in Natural language processing. Skip-gram architecture is used in the proposed model for better extraction of the semantic relationships as well as contextual information of words. However, the main contribution of this work is Adaptive Particle Swarm Optimization (APSO) algorithm based LSTM for sentiment analysis. LSTM is used in the proposed model for understanding complex patterns in textual data. To improve the performance of the LSTM, weight parameters are enhanced by presenting the Adaptive PSO algorithm. Opposition based learning (OBL) method combined with PSO algorithm becomes the Adaptive Particle Swarm Optimization (APSO) classifier which assists LSTM in selecting optimal weight for the environment in less number of iterations. So APSO - LSTM ‘s ability in adjusting the attributes such as optimal weights and learning rates combined with the good hyper parameter choices leads to improved accuracy and reduces losses. Extensive experiments were conducted on four datasets proved that our proposed APSO-LSTM model secured higher accuracy over the classical methods such as traditional LSTM, ANN, and SVM. According to simulation results, the proposed model is outperforming other existing models.


Author(s):  
Na Geng ◽  
Zhiting Chen ◽  
Quang A. Nguyen ◽  
Dunwei Gong

AbstractThis paper focuses on the problem of robot rescue task allocation, in which multiple robots and a global optimal algorithm are employed to plan the rescue task allocation. Accordingly, a modified particle swarm optimization (PSO) algorithm, referred to as task allocation PSO (TAPSO), is proposed. Candidate assignment solutions are represented as particles and evolved using an evolutionary process. The proposed TAPSO method is characterized by a flexible assignment decoding scheme to avoid the generation of unfeasible assignments. The maximum number of successful tasks (survivors) is considered as the fitness evaluation criterion under a scenario where the survivors’ survival time is uncertain. To improve the solution, a global best solution update strategy, which updates the global best solution depends on different phases so as to balance the exploration and exploitation, is proposed. TAPSO is tested on different scenarios and compared with other counterpart algorithms to verify its efficiency.


2021 ◽  
Vol 13 (6) ◽  
pp. 1207
Author(s):  
Junfei Yu ◽  
Jingwen Li ◽  
Bing Sun ◽  
Yuming Jiang ◽  
Liying Xu

Synthetic aperture radar (SAR) systems are susceptible to radio frequency interference (RFI). The existence of RFI will cause serious degradation of SAR image quality and a huge risk of target misjudgment, which makes the research on RFI suppression methods receive widespread attention. Since the location of the RFI source is one of the most vital information for achieving RFI spatial filtering, this paper presents a novel location method of multiple independent RFI sources based on direction-of-arrival (DOA) estimation and the non-convex optimization algorithm. It deploys an L-shaped multi-channel array on the SAR system to receive echo signals, and utilizes the two-dimensional estimating signal parameter via rotational invariance techniques (2D-ESPRIT) algorithm to estimate the positional relationship between the RFI source and the SAR system, ultimately combines the DOA estimation results of multiple azimuth time to calculate the geographic location of RFI sources through the particle swarm optimization (PSO) algorithm. Results on simulation experiments prove the effectiveness of the proposed method.


2021 ◽  
Vol 11 (2) ◽  
pp. 839
Author(s):  
Shaofei Sun ◽  
Hongxin Zhang ◽  
Xiaotong Cui ◽  
Liang Dong ◽  
Muhammad Saad Khan ◽  
...  

This paper focuses on electromagnetic information security in communication systems. Classical correlation electromagnetic analysis (CEMA) is known as a powerful way to recover the cryptographic algorithm’s key. In the classical method, only one byte of the key is used while the other bytes are considered as noise, which not only reduces the efficiency but also is a waste of information. In order to take full advantage of useful information, multiple bytes of the key are used. We transform the key into a multidimensional form, and each byte of the key is considered as a dimension. The problem of the right key searching is transformed into the problem of optimizing correlation coefficients of key candidates. The particle swarm optimization (PSO) algorithm is particularly more suited to solve the optimization problems with high dimension and complex structure. In this paper, we applied the PSO algorithm into CEMA to solve multidimensional problems, and we also add a mutation operator to the optimization algorithm to improve the result. Here, we have proposed a multibyte correlation electromagnetic analysis based on particle swarm optimization. We verified our method on a universal test board that is designed for research and development on hardware security. We implemented the Advanced Encryption Standard (AES) cryptographic algorithm on the test board. Experimental results have shown that our method outperforms the classical method; it achieves approximately 13.72% improvement for the corresponding case.


2021 ◽  
Vol 40 (5) ◽  
pp. 9007-9019
Author(s):  
Jyotirmayee Subudhi ◽  
P. Indumathi

Non-Orthogonal Multiple Access (NOMA) provides a positive solution for multiple access issues and meets the criteria of fifth-generation (5G) networks by improving service quality that includes vast convergence and energy efficiency. The problem is formulated for maximizing the sum rate of MIMO-NOMA by assigning power to multiple layers of users. In order to overcome these problems, two distinct evolutionary algorithms are applied. In particular, the recently implemented Salp Swarm Algorithm (SSA) and the prominent Optimization of Particle Swarm (PSO) are utilized in this process. The MIMO-NOMA model optimizes the power allocation by layered transmission using the proposed Joint User Clustering and Salp Particle Swarm Optimization (PPSO) power allocation algorithm. Also, the closed-form expression is extracted from the current Channel State Information (CSI) on the transmitter side for the achievable sum rate. The efficiency of the proposed optimal power allocation algorithm is evaluated by the spectral efficiency, achievable rate, and energy efficiency of 120.8134bits/s/Hz, 98Mbps, and 22.35bits/Joule/Hz respectively. Numerical results have shown that the proposed PSO algorithm has improved performance than the state of art techniques in optimization. The outcomes on the numeric values indicate that the proposed PSO algorithm is capable of accurately improving the initial random solutions and converging to the optimum.


2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Guo-Rong Cai ◽  
Shui-Li Chen

This paper presents an image parsing algorithm which is based on Particle Swarm Optimization (PSO) and Recursive Neural Networks (RNNs). State-of-the-art method such as traditional RNN-based parsing strategy uses L-BFGS over the complete data for learning the parameters. However, this could cause problems due to the nondifferentiable objective function. In order to solve this problem, the PSO algorithm has been employed to tune the weights of RNN for minimizing the objective. Experimental results obtained on the Stanford background dataset show that our PSO-based training algorithm outperforms traditional RNN, Pixel CRF, region-based energy, simultaneous MRF, and superpixel MRF.


2013 ◽  
Vol 791-793 ◽  
pp. 1423-1426
Author(s):  
Hai Min Wei ◽  
Rong Guang Liu

Project schedule management is the management to each stage of the degree of progress and project final deadline in the project implementation process. Its purpose is to ensure that the project can meet the time constraints under the premise of achieving its overall objectives.When the progress of schedule found deviation in the process of schedule management ,the progress of the plan which have be advanced previously need to adjust.This article mainly discussed to solve the following two questions:establish the schedule optimization model by using the method of linear;discuss the particle swarm optimization (PSO) algorithm and its parameters which have effect on the algorithm:Particle swarm optimization (PSO) algorithm is presented in the time limited project and the application of a cost optimization.


Sign in / Sign up

Export Citation Format

Share Document