scholarly journals Production of bacterial cellulose from glycerol: the current state and perspectives

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Peteris Zikmanis ◽  
Sergejs Kolesovs ◽  
Maija Ruklisha ◽  
Pavels Semjonovs

AbstractCurrent research in industrial microbiology and biotechnology focuses on the production of biodegradable microbial polymers as an environmentally friendly alternative to the still dominant fossil hydrocarbon-based plastics. Bacterial cellulose (BC) is important among microbial polymers due to its valuable properties and broad applications in variety of fields from medical to industrial technologies. However, the increase in BC production and its wider deployment is still limited by high costs of traditionally used raw materials. It is therefore necessary to focus on less expensive inputs, such as agricultural and industrial by-products or waste including the more extended use of glycerol. It is the environmentally harmful by-product of biofuel production and reducing it will also reduce the risk of environmental pollution. The experimental data obtained so far confirm that glycerol can be used as the renewable carbon source to produce BC through more efficient and environmentally friendly bioprocesses. This review summarizes current knowledge on the use of glycerol for the production of commercially prospective BC, including information on producer cultures, fermentation modes and methods used, nutrient medium composition, cultivation conditions, and bioprocess productivity. Data on the use of some related sugar alcohols, such as mannitol, arabitol, xylitol, for the microbial synthesis of cellulose are also considered, as well as the main methods and applications of glycerol pre-treatment briefly described.

Author(s):  
Mariann Chaussy ◽  
Morgan Chabannes ◽  
Arnaud Day ◽  
David Bulteel ◽  
Frederic Becquart ◽  
...  

Human activities require a growing need for raw materials. In order to contribute to sustainable development, many business sectors are focusing on biomass valorization. Whether from dedicated crops or first industrial processing, it generates materials with high potential that can be used in many fields. Non-food uses mainly concern the energy, chemical, and construction sectors. Whatever the intended application, a pre-treatment stage is essential to clean the material and/or to access a specific fraction. An additional modification may occur in order to endow the material with a new function thanks to a process known as functionalization. Uses of plant fractions (aggregates) in combination with cement offer advantages like low-density materials with attractive thermophysical properties for building. However, their development is limited by the compatibility of crop by-products with hydraulic binders such as Ordinary Portland Cement (OPC). This includes delays in setting time and hydrophilic character of vegetal components and their interaction with an alkaline environment. The aggregate/cement interfaces can therefore be strongly affected. In addition, the diversity of crop by-products and mineral binders increases the level of complexity. In order to overcome these drawbacks, the treatment of plant fractions before their use with mineral binders may result in significant benefits. In this way, various treatments have been tested, but the methods used at an industrial scale remain relatively under-researched. The purpose of this review is therefore to highlight the mechanisms involved in each specific process, thus justifying the operating conditions specific to each. This bibliography study aims to highlight potential treatments that could apply to biomass before their mixing with cementitious binders. According to the objective, a distinction can be made between extraction processes as hydrothermal or solvent treatments, assisted or not, and structural modification processes as surface treatments, impregnation, or grafting.


2019 ◽  
Vol 29 (4) ◽  
pp. 157-175 ◽  
Author(s):  
Jurand D. Bień ◽  
Beata Bień

Abstract In 2015, the European Commission has adopted an ambitious Circular Economy Action Plan (CEAP), which includes measures that would help stimulate Europe’s transition towards a circular economy. In general four key action areas have been defined: production, consumption, waste management and secondary raw materials. Actions will lead to the resource-efficient and environmentally friendly outcomes. Biological materials should be returned to the natural metabolic cycles after necessary pre-treatment while waste that can not be prevented or recycled is to be used for the energy recovery. Sewage sludge is a large-tonnage waste produced at wastewater treatments plants (WWTPs). Its utilization causes some problems. High water content in sludge, hazardous substances as heavy metals, organic toxins and pathogens limit some potential methods of sludge utilization. Thermal treatment methods offer a solution, some hazardous substances can be destroyed or removed, energy can be recovered and some nutrients can be obtained from ash or other by-products.


Author(s):  
Ivan Milovanovic ◽  
Maria Hayes

In recent years, demand for consumption of marine foods, and especially fish, has substantially increased worldwide. The majority of collagen available is sourced from mammalian-derived products. Although fish derived gelatine is a viable alternative to mammalian sourced gelatine, there are some challenges related to the use of fish gelatine including odour, colour, gelling and film forming properties as well as consistency in gelatine amino acid composition. Chemicals used for pre-treatment, as well as extraction conditions such as temperature and time, can influence the length of polypeptide chains that result and the functional properties of the gelatine. Compared to mammalian sources, gelatines derived from fish show notable differences in physical and chemical properties, and great care should be paid to optimization of the production process in order to obtain a product with the best properties for intended applications. The focus of this review is to explore the feasibility of producing gelatine sourced from marine processing by-products using different pre-treatment and extraction strategies with the aim of improving the techno-functional properties of the final product and improving the clean-label status of gelatines. The bioactivities of gelatine hydrolysates are also discussed.


2013 ◽  
Vol 67 (2) ◽  
pp. 277-291 ◽  
Author(s):  
Jelena Pejin ◽  
Milos Radosavljevic ◽  
Olgica Grujic ◽  
Ljiljana Mojovic ◽  
Suncica Kocic-Tanackov ◽  
...  

Brewer?s spent grain is the major by-product in beer production. It is produced in large quantities (20 kg per 100 liters of produced beer) throughout the year at a low cost or no cost, and due to its high protein and carbohydrates content it can be used as a raw material in biotechnology. Biotechnological processes based on renewable agro-industrial by-products have ecological (zero CO2 emission, eco-friendly by-products) and economical (cheap raw materials and reduction of storage costs) advantages. The use of brewer?s spent grain is still limited, being basically used as animal feed. Researchers are trying to improve the application of brewer?s spent grain by finding alternative uses apart from the current general use as an animal feed. Its possible applications are in human nutrition, as a raw material in biotechnology, energy production, charcoal production, paper manufacture, as a brick component, and adsorbent. In biotechnology brewer?s spent grain could be used as a substrate for cultivation of microorganisms and enzyme production, additive of yeast carrier in beer fermentation, raw material in production of lactic acid, bioethanol, biogas, phenolic acids, xylitol, and pullulan. Some possible applications for brewer?s spent grain are described in this article including pre-treatment conditions (different procedures for polysaccharides, hemicelluloses, and cellulose hydrolysis), working microorganisms, fermentation parameters and obtained yields. The chemical composition of brewer?s spent grain varies according to barley variety, harvesting time, malting and mashing conditions, and a quality and type of unmalted raw material used in beer production. Brewer?s spent grain is lignocellulosic material rich in protein and fibre, which account for approximately 20 and 70% of its composition, respectively.


Fermentation ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 82 ◽  
Author(s):  
Andrea Karlović ◽  
Anita Jurić ◽  
Nevena Ćorić ◽  
Kristina Habschied ◽  
Vinko Krstanović ◽  
...  

Beer production includes the formation of different by-products such as wastewater, spent grains, spent hops, and yeast. In addition to these well-known by-products, it is necessary to mention germ/rootlets, which also remain after the malting process. Given that a huge amount of beer is produced annually worldwide, by-products are available in large quantities throughout the year. Spent grains, spent hops, and spent yeasts are high-energy raw materials that possess a great potential for application in the branch of biotechnology, and the food industry, but these by-products are commonly used as livestock feed, disposed of in the fields, or incinerated. Breweries by-products can be utilized for microalgae production, biofuel production, extraction of proteins, polyphenolic, antioxidative substances, etc. This paper aims to address each of these by-products with an emphasis on their possible application in biotechnology and other industries.


2020 ◽  
Vol 10 (1) ◽  
pp. 85-89
Author(s):  
V. M. Sinchenko ◽  
V. S. Bondar ◽  
M. Ya. Gumentyk ◽  
Yu. A. Pastukh

The article presents the results of the analysis of the state of bioenergy in Ukraine in recent years, and notes a significant gap between its development indicators and those of other countries in the world. Measures for accelerated rates of biofuel production for the period up to 2025 and its projected indicators are substantiated. In particular, total biofuel production in Ukraine should increase from 2.83 million to 6.2 million tons, including: solid types up to - 3.5 million tons BOE, liquid-up to 0.7 million tons BOE, biogas-up to 2.0 million tons BOE. The list of main types of raw materials for biofuel production is given. The economic, technological, and economic characteristics of the main bioenergy crops, plantations of which are recommended to be laid in the coming years, are given. These performance indicators are obtained in production experiments, especially the ability to absorb carbon dioxide from the atmosphere and release oxygen, as well as reduce emissions of harmful substances during combustion. It is established that such a crop as Paulownia is the fastest growing plant (5-6 m per year). Another advantage of Paulownia is the high degree of environmental friendliness. One hectare consumes 1200 tons of CO2, significantly improving degraded, marginal land. The recommendations for the creation of industrial plantations of bioenergy crops and the material and technical base for processing are substantiated. Total costs for bioenergy by 2025 in the amount of $ 1,379 million have been determined. Proposal for co-operation of producers and processors of bio-raw materials at the local level is suggested.


2020 ◽  
Vol 42 (1) ◽  
pp. 42-51
Author(s):  
G.G. Geletukha ◽  
T.A. Zheliezna ◽  
S.V. Drahniev ◽  
A.I. Bashtovyi

Purpose of the work is to identify promising directions for using agribiomass for energy in Ukraine. Current state and prospects for the development of this segment of bioenergy are considered. Analysis of the strategic goals for bioenergy development set by the National Renewable Energy Action Plan until 2020 and Energy Strategy of Ukraine until 2035 shows that only wide involvement of agribiomass in the country's fuel and energy complex can ensure attainment of these goals. Ukraine has considerable potential of agricultural biomass. According to data of 2018, it is 10.1 Mtoe, which is 44% of the total bioenergy potential. The main constituents of agribiomass potential are cereal straw and by-products of grain corn production. Today, of the various types of agribiomass, sunflower husk is most actively used for energy: more than 63% of its potential. Utilization of the potential of other types of agricultural residues is between 0 and 3%. For Ukraine, the most promising direction is priority use of corn stover for energy. Feasibility study of corn stalks harvesting as well as production of briquettes and pellets from them was performed. Main factors affecting the cost-effectiveness of projects on solid biofuel production are cost of raw materials, manufacturing line productivity and sale price of the finished product. Results of the feasibility study show that corn briquettes and pellets can be competitive in the biofuel market of Ukraine, and their production can be a profitable business project.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1155 ◽  
Author(s):  
Małgorzata Smuga-Kogut ◽  
Bartosz Walendzik ◽  
Daria Szymanowska-Powalowska ◽  
Joanna Kobus-Cisowska ◽  
Janusz Wojdalski ◽  
...  

Triticale straw constitutes a potential raw material for biofuel production found in Poland in considerable quantities. Thus far, production of bioethanol has been based on food raw materials such as cereal seeds, sugar beets or potatoes, and the biofuel production methods developed for these lignocellulose raw materials can threaten the environment and are inefficient. Therefore, this study aimed to compare of methods for pretreatment of triticale straw using 1-ethyl-3-methylimidazolium acetate and the sulfate method in the aspect of ethanol production intended for fuel. Based on the conducted experiments it has been determined that the use of 1-ethyl-3-methylimidazolium acetate for the pretreatment of triticale straw resulted in an increase of reducing sugars after enzymatic hydrolysis and ethyl alcohol after alcoholic fermentation. Furthermore, the study compared the efficiency of enzymatic hydrolysis of triticale straw without pretreatment, after processing with ionic liquid, recycled ionic liquid and using sulfate method, allowing a comparison of these methods. The more favorable method of lignocellulose material purification was the use of ionic liquid, due to the lower amount of toxic byproducts formed during the process, and the efficiency test results of bioethanol production using pretreatment with ionic liquid and sulfate method were similar. Ionic liquid recycling after pretreatment of rye straw using lyophilization allowed us to reuse this solvent to purify rye straw, yet the efficiency of this method remained at a low level. As a result of the conducted study it was determined that the use of ionic liquid-1-ethyl-3-methylimidazolium acetate enhanced the yield of bioethanol from triticale straw from 1.60 g/dm3 after processing without pre-treatment to 10.64 g/dm3 after pre-treatment.


Author(s):  
Ivan Milovanovic ◽  
Maria Hayes

In recent years, demand for consumption of marine foods, and especially fish, has substantially increased worldwide. The majority of collagen available is sourced from mammalian-derived products. Although fish derived gelatine is a viable alternative to mammalian sourced gelatine, there are some challenges related to the use of fish gelatine including odour, colour, gelling and film forming properties as well as consistency in gelatine amino acid composition. Chemicals used for pre-treatment, as well as extraction conditions such as temperature and time, can influence the length of polypeptide chains that result and the functional properties of the gelatine. Compared to mammalian sources, gelatines derived from fish show notable differences in physical and chemical properties, and great care should be paid to optimization of the production process in order to obtain a product with the best properties for intended applications. The focus of this review is to explore the feasibility of producing gelatine sourced from marine processing by-products using different pre-treatment and extraction strategies with the aim of improving the techno-functional properties of the final product and improving the clean-label status of gelatines. The bioactivities of gelatine hydrolysates are also discussed.


2021 ◽  
Vol 14 (5) ◽  
pp. 49-55
Author(s):  
O. O. Tigunova ◽  

Aim. The purpose of the study was to investigate the effect of ultrasonic disintegration on the lignocellulosic raw materials (biomass of the non-cereal part of rape) with its subsequent use as a substrate for the production of biobutanol. Methods. Butanol-producing strains and the biomass of the non-cereal part of rape Brassica napus were used in the present study. Ultrasonic disintegration of lignocellulosic raw materials was performed on the specially designed equipment. Results. The effect of ultrasonic disintegration on lignocellulosic raw materials was investigated for further application in biofuel production based on microbiological conversion. The possibility of using the obtained components after the pre-treatment of lignocellulose by ultrasonic disintegration as a substrate for the microbiological synthesis of butanol was shown. The highest accumulation of butanol (2.4 g/l) was obtained with the use of 5% dry matter content in the medium, 5 min treatment and the specific power of ultrasonic disintegration of 0.72 W/ml. Conclusions. The possibility of producer strains of the genus Clostridium to use cellulose in the fermentation process has been shown. When using ultrasonic disintegration for pretreatment of the non-cereal part of the biomass of rape, the accumulation of butanol increased by 3 folds.


Sign in / Sign up

Export Citation Format

Share Document