scholarly journals Prediction of buckling force in hourglass-shaped specimens

Author(s):  
Ragnar Gjengedal ◽  
Ørjan Fyllingen ◽  
Vojtech Heinik

AbstractIt is important to avoid buckling during low-cycle fatigue testing. The buckling load is dependent on the specimen shape, material properties, and the testing machine. In the present investigation of hourglass-shaped specimens the importance of the diameter to radius of curvature is examined. Diameters of 5 and 7 mm are examined with a ratio of radius of curvature to diameter of 4, 6, and 8. The machine used is an Instron 8800 with elongated rods for a climate chamber. This leads to a reduced stiffness of the machine during compression testing. A finite element model (in Abaqus) is developed to identify the critical buckling force. For hourglass-shaped specimens, buckling means onset of sideways movement, without a drop in the applied load which is typical for conventional Euler buckling. The onset of sideways movement is identified experimentally by analysis of the data from extensometer and the load cell. This model is verified by experiments and fits within 0.6 to − 11% depending on the specimen diameter and diameter to radius of curvature ratio. The smallest deviations are obtained for the 7-mm-diameter specimen with deviation varying from 0.6 to − 3.3% between the model and the experiments. The current investigation is done with a commercially available hot rolled structural steel bar of Ø16 mm.

Author(s):  
Takamoto Itoh ◽  
Masao Sakane ◽  
Takahiro Morishita ◽  
Hiroshi Nakamura ◽  
Masahiro Takanashi

This paper studies multiaxial low cycle fatigue crack mode and failure life of Ti-6Al-4V. Stress controlled fatigue tests were carried out using a hollow cylinder specimen under multiaxial loadings of ?=0, 0.4, 0.5 and 1 of which stress ratio R=0 at room temperature. ? is a principal stress ratio and is defined as ?=sigmaII/sigmaI, where sigmaI and sigmaII are principal stresses of which absolute values take the largest and middle ones, respectively. Here, the test at ?=0 is a uniaxial loading test and that at ?=1 an equi-biaxial loading test. A testing machine employed is a newly developed multiaxial fatigue testing machine which can apply push-pull and reversed torsion loadings with inner pressure onto the hollow cylinder specimen. Based on the obtained results, this study discusses evaluation of the biaxial low cycle fatigue life and crack mode. Failure life is reduced with increasing ? induced by cyclic ratcheting. The crack mode is affected by the surface condition of cut-machining and the failure life depends on the crack mode in the multiaxial loading largely.


2017 ◽  
Vol 734 ◽  
pp. 194-201 ◽  
Author(s):  
Yutaka Konishi ◽  
Takamoto Itoh ◽  
Masao Sakane ◽  
Fumio Ogawa ◽  
Hideyuki Kanayama

This paper investigates the fatigue results in low cycle fatigue region obtained from a miniaturized specimen having a 6mm gage length, 3mm diameter and 55mm total length. Fatigue tests were performed for two type lead-free solders using horizontal-type electrical servo hydraulic push-pull fatigue testing machine. Materials employed were Sn-3.0Ag-0.5Cu and Sn-5Sb. The results from Sn-3.0Ag-0.5Cu were compared with those obtained using a bulk specimen in a previous study. Relationship between strain range and number of cycles to failure of the small-sized specimen agreed with those of the bulk specimens. The testing techniques are applicable to Sn-5Sb following the Manson-Coffin law. These results confirm that the testing technique proposed here, using small-sized specimen, is suitable to get fruitful fatigue data for lead-free solder compounds.


2012 ◽  
Vol 591-593 ◽  
pp. 993-996
Author(s):  
Qing Zhu Sun ◽  
Hai Bo Wang ◽  
Yong Chang Zhu

In this paper, the microstructure and properties of AZ91D-xCa-ySr were studied by adding alloying elements. The mechanical properties were investigated by WDT-10 micro-electric universal testing machine and WD-T low cycle fatigue testing machine. The OLYMPUS-GX71 Optical electronic microscope, XRD and SEM were employed to investigate the microstructure of AZ91D. The results showed that the grains were refined by adding Ca,Sr,Gd and Y. Low cycle fatigue (LCF) behavior of AZ91D-0.4Ca-0.3Sr was improved obviously by adding 3.0%Gd and 3.0%Y into material, the tensile strengthen was up to 299Mpa, the elongation was 0.78%.


1973 ◽  
Vol 95 (3) ◽  
pp. 157-160 ◽  
Author(s):  
G. Lunsford ◽  
A. W. Pense ◽  
P. S. Venkatesan ◽  
M. J. McIntosh

To investigate the low cycle fatigue properties of an 18 percent nickel maraging steel, a high pressure fatigue testing machine including the high pressure chamber and associated hydraulic controls was designed and developed to apply simultaneously to the specimen (1) constant fluid pressure up to 100,000 psi, (2) mean uniaxial tensile or compressive stress, and (3) alternating push-pull load at a selected rate. Using this machine, notched and unnotched specimens were tested. Results indicated a definite increase in fatigue life of the material in the high pressure environment.


2011 ◽  
Vol 488-489 ◽  
pp. 166-169
Author(s):  
Ping Ma ◽  
You Tang Li

A special clamp for fatigue of shaft under bending-torsion that used on the fatigue machine is designed and manufactured. For the medium carbon steel, the low-cycle fatigue experiments of shaft with annular notch under bending-torsion have been made on Shimadzu EHF-EM100kN high-frequency electro-hydraulic fatigue testing machine. Through experiments and analysis, the effects of tip radius, depth and open angle of notch on low cycle fatigue life of shaft with annular notch under bending-torsion are obtained. The method and results will play an important role on the fatigue life prediction and anti-fatigue design.


2022 ◽  
pp. 176-194
Author(s):  
Sreearravind M. ◽  
Ramesh Kumar S. ◽  
Ahilan C.

Aluminium and its alloy are widely employed in various automobile and aircraft areas because of their unique specific strength and formability. Al alloys that have been employed in aerospace structural components will undergo dynamic loading, which leads to fatigue due to mechanical stress and thermal conditions. Considering studies toward the low cycle fatigue behaviour of Al alloys are significantly narrowed, this chapter sighted to the analysis of fatigue behaviour of Al 6063 alloy at the various total strain amplitude (TSA) of 0.4% and 0.8%, which performed through the low cycle fatigue testing machine at the frequency rate of 0.2 Hz. The test results show that for 0.4% TSA, the number of cycles to failure (N) is 1786, whereas as the TSA increases, N got reduced. For 0.8% TSA, the cycle to failure is 291 and samples undergone cyclic softening during the test. The rate of cyclic plastic strain raised up with the increase in the TSA. Crack propagation was observed along with the quasi-cleavage fracture for 0.4% TSA and cleavage fracture for 0.8% TSA.


1966 ◽  
Vol 15 (148) ◽  
pp. 49-54
Author(s):  
Minoru KAWAMOTO ◽  
Katsumi SUMIHIRO ◽  
Koji KIDA

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4070
Author(s):  
Andrea Karen Persons ◽  
John E. Ball ◽  
Charles Freeman ◽  
David M. Macias ◽  
Chartrisa LaShan Simpson ◽  
...  

Standards for the fatigue testing of wearable sensing technologies are lacking. The majority of published fatigue tests for wearable sensors are performed on proof-of-concept stretch sensors fabricated from a variety of materials. Due to their flexibility and stretchability, polymers are often used in the fabrication of wearable sensors. Other materials, including textiles, carbon nanotubes, graphene, and conductive metals or inks, may be used in conjunction with polymers to fabricate wearable sensors. Depending on the combination of the materials used, the fatigue behaviors of wearable sensors can vary. Additionally, fatigue testing methodologies for the sensors also vary, with most tests focusing only on the low-cycle fatigue (LCF) regime, and few sensors are cycled until failure or runout are achieved. Fatigue life predictions of wearable sensors are also lacking. These issues make direct comparisons of wearable sensors difficult. To facilitate direct comparisons of wearable sensors and to move proof-of-concept sensors from “bench to bedside,” fatigue testing standards should be established. Further, both high-cycle fatigue (HCF) and failure data are needed to determine the appropriateness in the use, modification, development, and validation of fatigue life prediction models and to further the understanding of how cracks initiate and propagate in wearable sensing technologies.


2014 ◽  
Vol 554 ◽  
pp. 350-354
Author(s):  
Muhammad Azrie Husainy Mohd Jasri ◽  
Mohd Afendi ◽  
A.H.M. Fauzi

The purpose of this project is to build a prototype of compact flexural fatigue testing machine and to strive for an easy working-environment as required by the users besides cutting the cost of the machining. This particular project is about to build the prototype of compact flexural fatigue testing machine in compact mode. In this project, the prototype will be functioning 60% similar to the real fatigue machine which is Dynamic Fatigue Testing Machine (INSTRON) due to timer counter, frequency and load applied. But the new invention is this prototype was using the concept of electromagnetic force relay that will apply to the specimen using the application of basic electronics. The motion sensor also being applied to this prototype to achieve accurate results when the specimen breaks up after undergoes a fatigue failure.


Sign in / Sign up

Export Citation Format

Share Document