scholarly journals Identification of body fluids—menstrual blood, saliva, and nasal secretions—over different periods of time, using mRNA

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Riham F. Hussein ◽  
Sherif Mohamed El Mahdy ◽  
Nashwa Mohammed Saged ◽  
L. Rashed ◽  
Sherien S. Ghaleb

Abstract Background Forensic examination of biological samples started at the beginning of the twentieth century by applying the ABO blood group system in evidence related to crimes or human identification. In the present study, real-time PCR multiplex was used to identify dried and stored swabs (saliva, nasal secretions, and menstrual blood) through the target genes of saliva (histatin 3 and statherin), nasal secretions (statherin and BPIFA1), and menstrual blood (metalloproteinases 10 and 7). Results The expressions of histatin 3 and statherin in the dried saliva decreased over days of storage with a significant p value of <0.001. BPIFA1 was highly expressed in nasal secretions, and the expression level significantly decreased throughout the study with a significant p value of <0.001. The MMP7 and MMP10 genes were highly expressed in the menstrual blood, and the expression level decreased over days of storage with a significant p value of p<0.001. Conclusions Dried swabs of the saliva, Nasal secretions, Menstrual blood can be identified over the storage duration of the study using mRNA profiling of specific markers.

2021 ◽  
Vol 47 (1) ◽  
Author(s):  
Alberto Villani ◽  
Luana Coltella ◽  
Stefania Ranno ◽  
Federico Bianchi di Castelbianco ◽  
Paola Maria Murru ◽  
...  

Abstract Background During the first SARS-CoV-2 pandemic phase, the sudden closure of schools was one of the main measures to minimize the spread of the virus. In the second phase, several safety procedures were implemented to avoid school closure. To evaluate if the school is a safe place, students and staff of two school complexes of Rome were monitored to evaluate the efficacy of prevention measures inside the school buildings. Methods Oral secretions specimens were collected from 1262 subjects for a total of 3431 samples, collected over a 3 months period. Detection of Coronavirus SARS-CoV-2 was performed by real-time PCR. Target genes were represented by E gene, RdRP/S gene and N gene. Results Among the 3431 samples analyzed, just 16 sample resulted as positive or low positive: 1 sample in the first month, 12 samples in the second month and 3 in the third month. In each period of evaluation, all positive children attended different classes. Conclusions Even if the school has the potential for spreading viruses, our preliminary results show the efficacy of the implementations undertaken in this setting to minimize virus diffusion. Our evidence suggests that school does not act as an amplifier for transmission of SARS-CoV-2 and can be really considered a safe place for students.


Author(s):  
Aymen Abdelhaleem ◽  
Nabil Dhayhi ◽  
Mohamed Salih Mahfouz ◽  
Ommer Daffalla ◽  
Mansour Mubarki ◽  
...  

Visceral leishmaniasis (VL) is the most severe clinical form of the disease and has been reported in the Jazan region of southwest Saudi Arabia. This study aimed to diagnose VL by real-time polymerase chain reaction (PCR) and the direct agglutination test (DAT) and to identify the causative Leishmania species. A total of 80 participants, including 30 suspected VL patients, 30 healthy endemic control individuals, and 20 malaria disease controls, were enrolled in this study. Blood samples were collected and tested for Leishmania DNA by real-time PCR and for antibody by the DAT. Sequencing of some amplified PCR products was used to identify the causative Leishmania species. The diagnosis of VL was successfully achieved by both real-time PCR and by DAT with 100% sensitivity. Leishmania donovani and Leishmania infantum species were detected by sequencing both by the kDNA and ITS1 target genes, followed a BLASTn search. The detection of VL antibody by the DAT followed by the confirmatory detection of Leishmania DNA in patient blood by PCR could promote the adoption of the much less invasive and more sensitive methods for the routine diagnosis of VL. Further study with high sample volume to evaluate the PCR and the DAT are needed, to generate more robust evidence. Based on the sequencing results, emerging studies on VL should focus on the causative Leishmania species, reservoirs, and vectors that are important in the study area.


2021 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Amir Hossein Hasani Fard ◽  
Hanieh Jalali ◽  
Homa Mohseni Kouchesfehani

Background: Cholestasis is a pathophysiological condition, significantly reducing spermatozoa production. MiR-34c is highly expressed in adult male testicles and controls different stages of spermatogenesis. Objectives: Here, we aimed to investigate miR-34c expression in the testes of rat models of cholestasis. The expressions of THY-1, FGF-2, and CASP-3 genes, that are targeted by mirR-34c were also investigated. Methods: Cholestasis was induced in six adult rats via bile duct ligation. Four weeks after cholestasis induction, sera and testicular tissues were collected for further examinations. The levels of liver enzymes were measured using the ELISA. The structure of the testes was evaluated by histological examination. Total RNA was extracted from testes using a special kit and converted to cDNA. The expressions of miR-34c-5p, THY-1, FGF-2, and CASP-3 genes were determined by Real-Time PCR. Results: The serum levels of ALP, AST, and ALT were significantly elevated in the rat models of cholestasis (P < 0.001). Real-Time PCR revealed that the expressions of miR-34c-5p, THY-1, and FGF-2 genes decreased while CASP-3 gene was upregulated in the testes of cholestatic animals (all differences were significant at P < 0.05). Conclusions: Our study indicated that cholestasis was associated with reduced expression of miR-34c and altered expression of its target genes in the testis. Our results highlight the potential effects of cholestasis, a hepatobiliary disease, on testicular tissue function and male fertility.


2018 ◽  
Vol 127 (09) ◽  
pp. 615-622 ◽  
Author(s):  
Toktam Razavi ◽  
Shideh Montasser Kouhsari ◽  
Khalil Abnous

Abstract Diabetes mellitus is a complex metabolic disease around the world that is characterized by hyperglycemia resulting from impaired insulin secretion, insulin action, or both. MicroRNA-29a is an important regulator of insulin signaling and gluconeogenesis pathways through IRS2, PI3K and PEPCK expressions which up regulates in Diabetes. Morin is a substantial bioflavonoid which has insulin mimetic effect, and interacting with nucleic acids and proteins. In this study HepG2 cells, were exposed to high glucose to induce diabetic condition. We have determined whether high glucose stimulation might promotes miR-29a expression level in HepG2 cells and subsequently evaluated the Morin treatment effects on this state. In HepG2 cells, high glucose increases miR-29a expression level and decreases its target genes, IRS2 and PI3K expression, and increases associated downstream gene in gluconeogenic pathway, PEPCK. Morin treatment down regulates miR-29a expression level and improves insulin signaling and glucose metabolism. To confirm the inhibitory effects of Morin on miR-29a, we have transfected cells with mimic and inhibitor-miR-29a. This study for the first time identifies that Morin improves diabetic condition through down regulation of the miR-29a level, and suggest that this new inhibitor of miR-29a may be a useful biomedicine to treat diabetes.


2014 ◽  
Vol 58 (1) ◽  
pp. 23-28 ◽  
Author(s):  
Krzysztof Wąsowicz ◽  
Piotr Podlasz ◽  
Małgorzata Chmielewska ◽  
Katarzyna Łosiewicz ◽  
Jerzy Kaleczyc ◽  
...  

Abstract The expression of galanin (GAL) and its three receptors (GalR1, GalR2, and GalR3) were studied with real-time PCR in the colonic wall of pigs suffering from experimental colitis caused by the infection with Brachyspira hyodysenteriae. The expression was studied in the muscular membrane, mucosa/submucosa layer, and in lymphocytes isolated from mucosa/submucosa. The expression levels were normalized to glyceraldehyde-6-phosphate dehydrogenase (GAPDH) expression and compared to expression levels in control animals. GAL expression was found in all three studied compartments of the colonic wall. A significant decrease in GAL expression level was found in the mucosa/submucosa and in isolated lymphocytes, whereas the decrease was much less profound in the muscular membrane. In the case of galanin receptors their expression was found in all studied compartments of the colonic wall, however at different levels, as compared to GAPDH expression. The decrease of galanin receptors expression was found in all studied compartments of the colonic wall of the sick animals.


2018 ◽  
Vol 3 (3) ◽  
pp. 49
Author(s):  
Chuanlu Jiang ◽  
Liang Chang ◽  
Shihong Zhao ◽  
Zhou Dan ◽  
Guofu Li ◽  
...  

2020 ◽  
Vol 7 ◽  
Author(s):  
Athar Khalil ◽  
Rita Feghali ◽  
Mahmoud Hassoun

A sudden outbreak of pneumonia caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has rapidly spread all over the world facilitating the declaration of the resultant disease as a pandemic on March 2020. Predisposing factors for acquiring COVID-19 and for developing a severe form of this disease were postulated to be related to the epidemiological, clinical, and genetic characteristics of the patients. Biological markers such as the ABO blood group system were amongst these factors that were proposed to be linked to the variability in the disease course and/or the prevalence of the infection among different groups. Herein, we conducted the first retrospective case-control study from the Middle East and North Africa that tackles the association between the blood group types and the susceptibility to, as well as the severity of, SARS-CoV-2 infection. Contrary to the most acknowledged hypothesis, our results challenged the significance of this association and questioned the role of the ABO blood group system in dictating the severity of this disease. For future similar studies, we endorsed analyzing larger cohorts among different populations and we encouraged implementing more rigorous approaches to diminish the potential confounding effect of some underlying comorbidities and genetic variants that are known to be associated with the ABO blood group system.


Vox Sanguinis ◽  
1978 ◽  
Vol 35 (3) ◽  
pp. 176-180
Author(s):  
Maria Dolores Valdes ◽  
Caroline Zoes ◽  
Alice Froker

2008 ◽  
Vol 20 (1) ◽  
pp. 103
Author(s):  
T. Mitani ◽  
M. Nishiwaki ◽  
M. Anzai ◽  
H. Kato ◽  
Y. Hosoi ◽  
...  

Somatic cell nuclear transfer (SCNT) embryos can develop at relatively high rates during the preimplantation period; however, most of these fail after implantation. Development of extraembryonic tissue is indispensable for normal embryonic development. Hence, an abnormality of trophoblast development might be a significant factor in post-implantation lethality of SCNT embryos. A transcription factor, caudal-related homeobox 2 (Cdx2), appears to be involved in the segregation of ICM and trophectoderm (TE) in preimplantation embryos (Niwa et al. 2005 Cell 123, 917–929). Both Cdx2 and Oct3/4 are expressed in all cells at the morula stage, and then Cdx2 expression becomes restricted to the TE and Oct3/4 to the ICM as the blastocyst develops. Mouse embryos deficient in Cdx2 are able to develop to normal blastocysts but die soon after implantation, probably because of defects in the TE lineage. Moreover, dysplasia of the spongiotrophoblast layer might attribute to an abnormality of Tpbpa expression in mouse SCNT embryos (Wakisaka-Saito et al. 2006 Biochem. Biophys. Res. Commun. 349, 106–114). In this study, we examined the expression profiles of transcription factors implicated in trophoblast development in mouse SCNT embryos and intracytoplasmic sperm injection (ICSI) embryos by immunohistochemistry and real-time PCR analysis. SCNT embryos were produced according to the method reported previously (Wakayama et al. 1998 Nature 394, 369–374). In brief, B6D2F1 and B6C3F1 female mice were used for the collection of recipient oocytes and donor cells, respectively. After nuclear transfer, the oocytes were activated and cultured in KSOM to the morula and blastocyst stages. Immunohistochemical analysis demonstrated that in ICSI embryos Cdx2 was only partially expressed at the 8-cell stage but completely in early morulae. In contrast, in SCNT embryos, it was absent at the 8-cell stage and appeared partially at the early morula stage. Thereafter, Cdx2 expression became restricted to the TE cells in both the ICSI and the SCNT blastocysts. However, ectopic expression of Oct3/4 was observed in the TE cells of SCNT, but not in ICSI blastocysts. Real-time PCR analysis showed that at the 8-cell stage, Cdx2 was expressed in ICSI but not in SCNT embryos. In addition, the expression level of Cdx2 in SCNT embryos at the blastocyst stage was only half that in ICSI embryos (P < 0.05). However, there was no significant difference in expression level of Oct3/4 between ICSI and SCNT embryos. Eomesodermin (Eomes) is also implicated in trophoblast development and its expression depends on Cdx2, BMP4, and FGF4. In SCNT embryos, the expression level of Eomes was also only half that in ICSI embryos. These results indicate that the delayed expression of Cdx2 in SCNT embryos may lead to the ectopic expression of Oct3/4 in blastocysts and, along with the limited expression of Cdx2 and Eomes, may contribute to disorders in the function of the trophoblast lineage for normal placental development. This work was supported by a Grant-in-Aid for the 21st Century Center of Excellence Program of the MEXT, Japan, and by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science.


Sign in / Sign up

Export Citation Format

Share Document