scholarly journals Symbiotic and adverse interplay of hypogeal germination periods on brown rice (Oryza sativa): nutrient and non-nutrient characteristics

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Judith Uchenna Chima ◽  
Temitope Omolayo Fasuan

AbstractThis study investigated the symbiotic and adverse consequence of hypogeal germination periods on nutrients and non-nutrient characteristics of brown rice (Oryza sativa). Brown rice paddy was subjected to hypogeal germination for 0–72 h using one-factor design-response surface methodology (OFD-RSM) and evaluated for nutrients and non-nutrient characteristics. The results showed that hypogeal germination caused a significant (p < 0.05) change in the proximate composition: protein (9.42–12.36%), fat (0.88–1.38%), ash (1.87–2.50%); anti-nutrients: saponin (2.03–2.22%), oxalate (2.44–3.45 mg/100 g), phytate (6.99–8.81 mg/100 g); functional properties: water absorption capacity, WAC (121.23–147.78%), oil absorption capacity, OAC (121.39–147.26%); antioxidants properties: 2, 2-diphenyl-1-picrylhydrazyl, DPPH (35.30–43.60%), ferric reducing antioxidant power, FRAP (0.054–0.119 mMolFe2+), metal chelating activity, MCA (44.28–52.99%), total phenolic content, TPC (0.623–0.798 mg gallic acid equipvalent per gram (mgGAE/g)), total flavonoid content, TFC (43.47–50.63 mg rutin equivalent per gram (mgRUTIN/g)); and mineral content: calcium (36.0–41.76 mg/100 g), phosphorus (82.53–94.32 mg/100 g), and magnesium (162.70–168.36 mg/100 g). Germination had significant symbiotic effects (linear and quadratic) on the proximate, DPPH, FRAP, MCA, TPC, WAC, OAC, and anti-nutrients. Whereas, adverse effects (linear and quadratic) of germination were noted in total flavonoids and anti-nutrients. Optimum hypogeal germination period of 72.18 h was established and corresponding protein (12.37 g/100 g), fat (1.37 g/100 g), fibre (2.15 g/100 g), moisture (10.07 g/100 g), DPPH (43.66%), FRAP (0.105mMolFe2+), TPC (0.08mgGAE/g), TFC (50.25MgRUTIN/g), WAC (147.99%), OAC (147.29%), Calcium (41.77 mg/100 g), iron (0.207 mg/100 g), zinc (5.89 mg/100 g), phosphorus (94.77 mg/100 g). Phenolic compounds profile of the optimized germinated brown rice showed the presence of gallic acid (2.84 mg/100 g), 4-hydroxy benzoic acid (3.41 mg/100 g), caffeic acid (4.63 mg/100 g), vanillic acid (6.19 mg/100 g), catechin (3.88 mg/100 g), chlorogenic acid (1.93 mg/100 g), ferulic acid (4.16 mg/100 g), and quercetin (1.27 mg/100 g) whereas, the non-germinated rice showed gallic acid (2.05 mg/100 g), 4-hydroxy benzoic acid (2.53 mg/100 g), caffeic acid (4.11 mg/100 g), vanillic acid (6.08 mg/100 g), catechin (3.35 mg/100 g), chlorogenic acid (1.89 mg/100 g), ferulic acid (4.23 mg/100 g), and quercetin (1.29 mg/100 g). Hypogeal germinated brown rice could find application as a functional ingredient in food formulation.

2020 ◽  
Author(s):  
Prince A Fordjour ◽  
Jonathan P Adjimani ◽  
Bright Asare ◽  
Nancy O Duah-Quashie ◽  
Neils B Quashie

Abstract Background In the absence of an effective vaccine against malaria, chemotherapy remains a major option in the control of the disease. Then, the recent report of the emergence and spread of clones of Plasmodium falciparum resistant to available antimalarial drugs should be of concern as it poses a threat to disease control. Compounds whose pharmacological properties have been determined and touted for other disease can be investigated for antimalarial activity. Phenolic acids (polyphenols) have been reported to exhibit antioxidant, anticancer, anti-inflammatory, antiviral and antibiotic effects. However, information on their antimalarial activity is scanty. Phenolic acids are present in a variety of plant-based foods: mostly high in the skins and seeds of fruits as well as the leaves of vegetables. Systematic assessment of these compounds for antimalarial activity is therefore needed. Method Using the classical in vitro drug test, the antimalarial activities of five hydroxycinnamic acids, (caffeic acid, rosmarinic acid, chlorogenic acid, o-Coumaric acid and ferulic acid) and two hydroxybenzoic acids (gallic acid and protocatechuic acid) against 3D7 clones of Plasmodium falciparum was determined. Results Among the phenolic acids tested, caffeic acid and gallic acid were found to be the most effective, with mean IC 50 value of 17.73µg/ml and 26.59µg/ml respectively for three independent determinations. Protocatechuic acid had an IC 50 value of 30.08 µg/ml. Rosmarinic acid and chlorogenic acid, showed moderate antimalarial activities with IC 50 values of 103.59µg/ml and 105µg/ml respectively. The IC 50 values determined for ferulic acid and o-Coumaric acid were 93.36µg/ml and 82.23µg/ml respectively. Conclusion The outcome of this study suggest that natural occurring phenolic compounds have appreciable level of antimalarial activity which can be exploited for use through combination of actions/efforts including structural manipulation to attain an increase in their antimalarial effect. Eating of natural food products rich in these compounds could provide antimalarial prophylactic effect.


Author(s):  
Ingrīda Augšpole ◽  
Tatjana Kince ◽  
Ingmārs Cinkmanis

Abstract The main purpose of the study was to determine changes of polyphenol concentrations in hybrids of Nante type carrots during storage. Fresh Nante type ‘Forto’ variety carrots and carrot hybrids ‘Bolero’ F1, ‘Champion’ F1, and ‘Maestro’ F1 were cultivated in the Zemgale region of Latvia. Carrots were stored for six months in air (+3 ± 1 °C, RH = 89 ± 1%) and polyphenol compound concentrations were determined at two month intervals. High-performance liquid chromatography was used to determine concentrations of eight polyphenols in carrots: gallic acid, catechin, epicatechin, caffeic acid, chlorogenic acid, ferulic acid, vanillin, and rutin. Significant differences occurred in polyphenol concentrations of fresh Nante type variety ‘Forto’ carrots and several hybrids (‘Bolero’ F1, ‘Champion’ F1, and ‘Maestro’ F1) during storage. After six months of storage, the concentration of polyphenol compounds of Nante type carrots decreased — caffeic acid by 64.6%, chlorogenic acid — by 37.9% and vanillin — by 81.5%. However, during storage, concentration of some polyphenol compounds increased, as catechin by 30.5%, epicatechin by 85.2%, gallic acid by 48.5% and ferulic acid by 87.9%.


Author(s):  
ATANU CHATTERJEE ◽  
RITU KHANRA ◽  
PRANABESH CHAKRABORTY ◽  
HIMANGSHU SEKHAR MAJI

Objective: The objective of the present study is to isolate the lead molecules and the antioxidant activity is also evaluated. Method: Cyperus tegetum Roxb. (Cyperaceae) is found in the tribal area of West Midnapur district of West Bengal, India. It is commonly known as Madur Kathi. Different chromatographic techniques, namely, thin-layer chromatography, column chromatography, and high-performance liquid chromatography (HPLC) were used to isolate and identify the different secondary metabolites. Results: The different spectral studies (nuclear magnetic resonance [NMR], infrared [IR], and ultraviolet [UV]) confirmed the presence of stigmasterol as an isolated compound from the extract of C. tegetum (ECT). HPLC analysis revealed the presence of flavonoids, namely, rutin (retention time [Rt]: 3.00), myricetin (Rt: 3.9), and quercetin (Rt: 5.6) and phenolic acids, namely, gallic acid (Rt: 4.0), caffeic acid (Rt: 5.4), chlorogenic acid (Rt: 7.3), and ferulic acid (Rt: 8.8) in ECT. ECT showed strong reducing power, diphenyl-2-picrylhydrazyl hydrate radical, superoxide anion scavenging, and hydrogen peroxide scavenging activities when compared to standard compounds. Conclusion: From this study, several flavonoid and phenolic compounds were identified by RP-HPLC analysis. Flavonoids are rutin, quercetin, and myricetin and phenolic compounds are gallic acid, ferulic acid, chlorogenic acid, and caffeic acid, respectively. The different spectral studies (NMR, IR, and UV) confirmed the presence of stigmasterol as an isolated compound from ECT.


2017 ◽  
Vol 21 (2) ◽  
pp. 97-101 ◽  
Author(s):  
Adina Frum

AbstractRomanian spontaneous flora provides a lot of resources for the determination of different chemical compounds. This study uses flower samples fromCalendula officinalisL. extracted through maceration. The chemical compounds determined were: (+)-catechin, caffeic acid, chlorogenic acid, cinnamic acid, ferulic acid, gallic acid, rutin, resveratrol and quercetin. They were analyzed by using an optimized HPLC method. (+)-Catechin, caffeic acid, chlorogenic acid and quercetin could not be identified in the analyzed samples. The greatest amount of phenolic compound found was rutin and the smallest quantity was determined for ferulic acid. The quantified compounds have proven to have benefits regarding human health, thus they can be used as functional compounds and can be included in food products and food supplements.


2018 ◽  
Vol 15 (1) ◽  
pp. 11-20 ◽  
Author(s):  
Maria A. Morosanova ◽  
Anton S. Fedorov ◽  
Elena I. Morosanova

Background: The consumption of antioxidants, including phenolic compounds, is considered important for preventing the oxidative damage diseases and ageing. The total polyphenol content (TPC) is the parameter used to estimate the quality of plant-derived products. Methods: Phenol oxidase activity of green bean (Phaseolus vulgaris) crude extract (in the presence of hydrogen peroxide) and banana (Musa sp.) pulp crude extract has been studied spectrophotometrically using catechol, gallic acid, caffeic acid, ferulic acid, and quercetin as substrates. All studied compounds have been oxidized in the presence of green bean crude extract and hydrogen peroxide; all studied compounds except ferulic acid have been oxidized in the presence of banana pulp crude extract. Michaelis constants (Km) and maximum reaction rates (Vmax) have been determined for oxidation in the presence of green bean crude extract and hydrogen peroxide (Km are 3.8×10-4 M, 1.6×10-3 M, 2.2×10-4 M, 2.3×10-4 M, 1.4×10-4 M and Vmax are 0.046 min-1, 0.102 min-1, 0.185 min-1, 0.053 min-1, 0.041 min-1 for catechol, gallic acid, caffeic acid, ferulic acid, and quercetin, respectively) and for oxidation in the presence of banana pulp crude extract (Km are 1.6×10-3 M, 3.8×10-3 M, 2.2×10-3 M, 4.2×10-4 M and Vmax are 0.058 min-1, 0.025 min-1, 0.027 min-1, 0.015 min-1 for catechol, gallic acid, caffeic acid, and quercetin, respectively). The influence of 3-methyl-2-benzothiazolinone hydrazone (MBTH) on the oxidation reactions kinetics has been studied: Michaelis constants values decrease and maximum reaction rates increase, which contributes to the increase in sensitivity of the determination. Results: Kinetic procedures of Total Polyphenol Content (TPC) determination using crude plants extracts in the presence of MBTH have been proposed (time of analysis is 1 min). For gallic acid (used as a standard for TPC determination) detection limit is 5.3×10-5 M, quantitation limit is 1.8×10-4 M, and linear range is 1.8×10-4 - 1.3×10-3 M for green bean crude extract; detection limit is 2.9×10-5 M, quantitation limit is 9.5×10-5 M, and linear range is 9.5×10-5 - 2.4×10-3 M for banana pulp crude extract. Proposed procedures are characterized by higher interference thresholds for sulfites, ascorbic acid, and citric acid compared to pure enzymes (horseradish peroxidase and mushroom tyrosinase) in the same conditions. Compared with standard Folin-Ciocalteu (FC) method the procedures described in this work are also characterized by less interference and more rapid determination. Conclusion: The procedures have been applied to TPC determination in tea, coffee, and wine samples. The results agree with the FC method for tea and coffee samples and are lower for wine samples, probably, due to sulfites interference.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Helena Abramovič ◽  
Blaž Grobin ◽  
Nataša Poklar Ulrih ◽  
Blaž Cigić

Trolox, gallic acid, chlorogenic acid, caffeic acid, catechin, epigallocatechin gallate, and ascorbic acid are antioxidants used as standards for reaction with chromogenic radicals, 2,2-diphenyl-1-picrylhydrazyl (DPPH⋅) and 2,2′-azino-bis-3-ethylbenzotiazolin-6-sulfonic acid (ABTS⋅+), and Folin–Ciocalteu (FC) reagent. The number of exchanged electrons has been analyzed as function of method and solvent. A majority of compounds exchange more electrons in FC assay than in ABTS and DPPH assays. In reaction with chromogenic radicals, the largest number of electrons was exchanged in buffer (pH 7.4) and the lowest reactivity was in methanol (DPPH) and water (ABTS). At physiological pH, the number of exchanged electrons of polyphenols exceeded the number of OH groups, pointing to the important contribution of partially oxidized antioxidants, formed in the course of reaction, to the antioxidant potential. For Trolox, small impact on the number of exchanged electrons was observed, confirming that it is more suitable as a standard compound than the other antioxidants.


2017 ◽  
Vol 44 (No. 4) ◽  
pp. 178-185 ◽  
Author(s):  
Alina Kałużewicz ◽  
Jolanta Lisiecka ◽  
Monika Gąsecka ◽  
Włodzimierz Krzesiński ◽  
Tomasz Spiżewski ◽  
...  

This study was conducted to study the influence of plant density and irrigation on the content of phenolic compounds, i.e., phenolic acids and flavonols in cv. ‘Sevilla’ cauliflower curds. Levels of phenolic acids and flavonols were in the range of 3.0–6.2 mg and 25.4–87.8 mg/100 g of dry weight, respectively, depending on plant density and irrigation. Of the phenolic acids, caffeic acid was detected in the highest amount, followed by p-coumaric acid, sinapic acid, gallic acid, and ferulic acid. Of the two flavonols detected, the levels of quercetin were higher than those of kaempferol. The content of the detected phenolic acids (with the exception of ferulic acid) and both flavonols increased with increasing plant density. Furthermore, the concentration of phenolic compounds (with the exception of ferulic acid) was significantly higher under irrigation.


2018 ◽  
Vol 68 ◽  
pp. 19-26 ◽  
Author(s):  
Tran Dang Xuan ◽  
Do Tuan Bach ◽  
Tran Dang Dat

The present study examined the correlation between phenolic acids and flavonoids with high rice yield traits of rice. It was observed that the difference of phenolic contents among the tested rice lines occurred only in the vegetative stage. The concentrations of phenolic acids were higher in the rice high yield cultivars than low yield variety in the vegetative stage, but they either decreased dramatically or disappeared during the development stage. Caffeic acid was found only in high yield rice, whereas chlorogenic acid was detected only in low yield rice. Sinapic acid was the dominant phenolic acid in high yield cultivars at vegetative stage (3.7 mg/g), followed by ferulic acid (1.2 mg/g). These findings suggest that caffeic acid, ferulic acid, sinapic acid and chlorogenic acid may play a particular role in forming yield components in rice. The cultivar B3 contained high amount of sinapic acid may be used as a natural source for pharmaceutical use.


Sign in / Sign up

Export Citation Format

Share Document