scholarly journals Frontal tangential coronal view two-dimensional ultrasonography in assessment of fetal face [mouth and nose] in comparison with four-dimensional ultrasonography

Author(s):  
Hisham A. Elghany Algahlan ◽  
Mamdouh Elsemary ◽  
Mohammed Hazem

Abstract Background The fetal face reflects strictly the development of the fetal brain during its growth. Four-dimensional (4D) examination permits continuous monitoring of the examined parts of fetal face and surface. The final performance of obstetric sonographic images depends upon multiple factors, such as fetal lie, uterine wall, abdominal wall fat, amniotic fluid, and the number of gestations which may limit the optimum performance of (4D) ultrasound. The two-dimensional (2D) ultrasound is the first choice due to its wide availability, low cost, and real-time capabilities. The tangential view obtained by (2D) ultrasound coronal sections through the face showed the nose, nostril, lips, eye, lens, and hard palate. Results One hundred and sixty fetuses showed straight forwards obstetric examination by both 2D and 4D examinations with identical final reports. While the total number of fetuses with clear images by 2D frontal tangential coronal examination was 191 cases, only 29 cases failed, whereas 170 cases obtained clear images by 4D examination, and 50 cases failed. Both 2D and 4D ultrasound failed to obtain clear images of 19 cases, while 4D failed for 31 cases, and 2D failed for 10 cases. 2D imaging was found to be significantly better than 4D imaging, with a P value of 0.009. Conclusion 2D ultrasound using the frontal tangential coronal view is an essential part of the fetal examination and more superior than 4D ultrasound in assessing facial anatomy and anomalies, as well comparable to 4D ultrasound as regards fascial expression.

2017 ◽  
Vol 45 (6) ◽  
Author(s):  
Eberhard Merz ◽  
Sonila Pashaj

AbstractThree-/four-dimensional (3D/4D) imaging enables a more detailed survey of the embryo and the fetus compared to two-dimensional (2D) ultrasound. The availability of several display modes and standardized examinations permits the demonstration of both the normal and abnormal fetal anatomy in controlled planes and rendered images from different angles. This allows the demonstration of even subtle fetal defects in an ideal sectional plane in a precisely rendered surface or transparent image viewed from an optimal angle. When counseling the parents, the rendered images can help them understand the severity of an existing malformation or, conversely, ensure them of the absence of any fetal abnormality. This is particularly useful in cases with an increased recurrence risk of a specific fetal malformation.


2016 ◽  
Vol 49 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Josilda Ferreira Cruz ◽  
Mário Augusto Ferreira Cruz ◽  
José Machado Neto ◽  
Demetrius Silva de Santana ◽  
Cristiane Costa da Cunha Oliveira ◽  
...  

Abstract Objective: To estimate the prevalence and evaluate sonographic findings compatible with changes consistent with hepatic steatosis in patients referred for abdominal ultrasonography at four reference centers in Aracaju, SE, Brazil. Materials and Methods: Prospective, descriptive survey, with analytical and quantitative approach, comprising abdominal ultrasonography scans performed with a convex, dynamic 3.75 MHz transducer. Liver dimensions and parenchymal echotexture were evaluated, classifying hepatic steatosis into grades (1, 2 or 3). The SPSS® 22.0 software was used for statistical analysis, adopting p < 0.05 as significance level. Results: A total of 800 individuals (561 women and 239 men) were evaluated. The prevalence of steatosis was 29.1%, and the male patients were most affected, presenting with more advanced grades of disease (p = 0.021), as follows: 119 grade 1 (51.0%); 94 grade 2 (40.4%); and 20 grade 3 (8.6%). The median age patients' was 46 years. Conclusion: In the present study sample, the prevalence of hepatic steatosis was high, particularly in the male patients. Ultrasonography is suggested as a first choice for the diagnosis of this condition, considering its wide availability, low cost and absence of side effects or risks to the patient.


Author(s):  
Ana Tikvica ◽  
Berivoj Miskovic ◽  
Badreldeen Ahmed

Abstract Direct assessment of functional development of the fetal central nervous system is not possible, but the assessment of fetal behavior may provide the possibility to distinct between normal and abnormal brain development. Since the ultrasonographic technique allowed the investigation of spontaneous fetal motor activity in utero first studies of spontaneous prenatal movements and fetal behavior were performed and published. 2D ultrasound was considered somewhat subjective method because information needs observer interpretation. The latest development of three-dimensional (3D) and four dimensional (4D) sonography that overcame some of the limitations of 2D methods enable precise study of fetal and even embryonic activity and behavior. In the following text we reviewed the literature on the behavior in the high-risk pregnancies for cerebral palsy assessed by the ultrasonographic techniques.


Author(s):  
Yingjin WANG ◽  
Xiaoyuan CHEN ◽  
Shujuan ZHONG ◽  
Rong ZHANG ◽  
Yanyan PAN ◽  
...  

Background: To assess the clinical value of two-dimensional (2D) plus four-dimensional (4D) ultrasonography in diagnosis of fetal craniocerebral anomalies. Methods: Retrospective analysis was performed on the sonographic features of 83 maternity patients admitted to Northwest Women’s and Children’s Hospital, Xian China from January 2013 to December 2017 diagnosed with suspected fetal anomalies of the brain and skull through 2D and 4D ultrasonography. Results: Fifty six patients were diagnosed with the anomalies by 2D ultrasonography only, 65 patients by 4D ultrasonography only, and 74 patients by 2D plus 4D ultrasonography.76 patients were confirmed to have fetal craniocerebral anomalies after birth or induced labor. Diagnostic accuracies of 2D ultrasound only, 4D ultrasound only, and 2D plus 4D ultrasound were 68.67%, 81.93% and 95.18%, respectively (P<0.05). The accuracy of 2D plus 4D ultrasound was greater than those of 2D ultrasound only and 4D ultrasound only, and the accuracy of 4D ultrasound only was higher than that of 2D ultrasound only (P<0.05). The sensitivity of 2D plus 4D ultrasound was greater than those of 2D ultrasound only and 4D ultrasound only (P<0.05). The specificity of 2D plus 4D ultrasound was greater than those of 2D ultrasound only and 4D ultrasound only (P<0.05). Conclusion: Combined ultrasonography can better differentiate fetal craniocerebral anomalies, providing early and more accurate information for clinicians as well as maternity patients to make a decision. This clinical practice would be valuable for improving the quality of the newborn population.


2019 ◽  
Author(s):  
Ayesha Tariq ◽  
M. Abdullah Iqbal ◽  
S. Irfan Ali ◽  
Muhammad Z. Iqbal ◽  
Deji Akinwande ◽  
...  

<p>Nanohybrids, made up of Bismuth ferrites/Carbon allotropes, are extensively used in photocatalytic applications nowadays. Our work proposes a nanohybrid system composed of Bismuth ferrite nanoparticles with two-dimensional (2D) MXene sheets namely, the BiFeO<sub>3</sub> (BFO)/Ti<sub>3</sub>C<sub>2</sub> (MXene) nanohybrid for enhanced photocatalytic activity. We have fabricated the BFO/MXene nanohybrid using simple and low cost double solvent solvothermal method. The SEM and TEM images show that the BFO nanoparticles were attached onto the MXene surface and in the inter-layers of two-dimensional (2D) MXene sheets. The photocatalytic application is tested for the visible light irradiation which showed the highest efficiency among all pure-BFO based photocatalysts, i.e. 100% degradation in 42 min for organic dye (Congo Red) and colorless aqueous pollutant (acetophenone) in 150 min, respectively. The present BFO-based hybrid system exhibited the large surface area of 147 m<sup>2</sup>g<sup>-1</sup>measured via Brunauer-Emmett-Teller (BET) sorption-desorption technique, and is found to be largest among BFO and its derivatives. Also, the photoluminescence (PL) spectra indicate large electron-hole pair generation. Fast and efficient degradation of organic molecules is supported by both factors; larger surface area and lower electron-hole recombination rate. The BFO/MXene nanohybrid presented here is a highly efficient photocatalyst compared to other nanostructures based on pure BiFeO<sub>3</sub> which makes it a promising candidate for many future applications.</p>


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 607
Author(s):  
Lucero M. Hernandez-Cedillo ◽  
Francisco G. Vázquez-Cuevas ◽  
Rafael Quintero-Torres ◽  
Jose L. Aragón ◽  
Miguel Angel Ocampo Mortera ◽  
...  

In this article, we show an alternative low-cost fabrication method to obtain poly(dimethyl siloxane) (PDMS) microfluidic devices. The proposed method allows the inscription of micron resolution channels on polystyrene (PS) surfaces, used as a mold for the wanted microchip’s production, by applying a high absorption coating film on the PS surface to ablate it with a focused low-power visible laser. The method allows for obtaining micro-resolution channels at powers between 2 and 10 mW and can realize any two-dimensional polymeric devices. The effect of the main processing parameters on the channel’s geometry is presented.


2020 ◽  
Vol 10 (1) ◽  
pp. 2 ◽  
Author(s):  
Soroush Ojagh ◽  
Sara Saeedi ◽  
Steve H. L. Liang

With the wide availability of low-cost proximity sensors, a large body of research focuses on digital person-to-person contact tracing applications that use proximity sensors. In most contact tracing applications, the impact of SARS-CoV-2 spread through touching contaminated surfaces in enclosed places is overlooked. This study is focused on tracing human contact within indoor places using the open OGC IndoorGML standard. This paper proposes a graph-based data model that considers the semantics of indoor locations, time, and users’ contexts in a hierarchical structure. The functionality of the proposed data model is evaluated for a COVID-19 contact tracing application with scalable system architecture. Indoor trajectory preprocessing is enabled by spatial topology to detect and remove semantically invalid real-world trajectory points. Results show that 91.18% percent of semantically invalid indoor trajectory data points are filtered out. Moreover, indoor trajectory data analysis is innovatively empowered by semantic user contexts (e.g., disinfecting activities) extracted from user profiles. In an enhanced contact tracing scenario, considering the disinfecting activities and sequential order of visiting common places outperformed contact tracing results by filtering out unnecessary potential contacts by 44.98 percent. However, the average execution time of person-to-place contact tracing is increased by 58.3%.


Symmetry ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1249 ◽  
Author(s):  
Bruns

Cyclodextrins (CDs) are cone-shaped molecular rings that have been widely employed in supramolecular/host–guest chemistry because of their low cost, high biocompatibility, stability, wide availability in multiple sizes, and their promiscuity for binding a range of molecular guests in water. Consequently, CD-based host–guest complexes are often employed as templates for the synthesis of mechanically bonded molecules (mechanomolecules) such as catenanes, rotaxanes, and polyrotaxanes in particular. The conical shape and cyclodirectionality of the CD “bead” gives rise to a symmetry-breaking effect when it is threaded onto a molecular “string”; even symmetrical guests are rendered asymmetric by the presence of an encircling CD host. This review focuses on the stereochemical implications of this symmetry-breaking effect in mechanomolecules, including orientational isomerism, mechanically planar chirality, and topological chirality, as well as how they support applications in regioselective and stereoselective chemical synthesis, the design of molecular machine prototypes, and the development of advanced materials.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Jiajia Zhang ◽  
Guangcai Sun ◽  
Mengdao Xing ◽  
Zheng Bao ◽  
Fang Zhou

Multiple-input multiple-output (MIMO) synthetic aperture radar (SAR) using stepped frequency (SF) waveforms enables a high two-dimensional (2D) resolution with wider imaging swath at relatively low cost. However, only the stripmap mode has been discussed for SF MIMO-SAR. This paper presents an efficient algorithm to reconstruct the signal of SF MIMO-SAR in the spotlight and sliding spotlight modes, which includes Doppler ambiguity resolving algorithm based on subaperture division and an improved frequency-domain bandwidth synthesis (FBS) method. Both simulated and constructed data are used to validate the effectiveness of the proposed algorithm.


Sign in / Sign up

Export Citation Format

Share Document